論文の概要: Self-Harmonized Chain of Thought
- arxiv url: http://arxiv.org/abs/2409.04057v1
- Date: Fri, 6 Sep 2024 06:57:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 16:36:07.814317
- Title: Self-Harmonized Chain of Thought
- Title(参考訳): 思考の自己調和型連鎖
- Authors: Ziqi Jin, Wei Lu,
- Abstract要約: CoT(Chain-of-Thought)のプロンプトにより、大きな言語モデルが中間ステップを介して複雑な推論を行うことができることが明らかになった。
ECHOは3つの推論領域で最高の全体的なパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 8.540320749424172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chain-of-Thought (CoT) prompting reveals that large language models are capable of performing complex reasoning via intermediate steps. CoT prompting is primarily categorized into three approaches. The first approach utilizes straightforward prompts like ``Let's think step by step'' to generate a sequential thought process before yielding an answer. The second approach makes use of human-crafted, step-by-step demonstrations to guide the model's reasoning process. The third automates the generation of reasoned demonstrations with the 'Let's think step by step'.This approach sometimes leads to reasoning errors, highlighting the need to diversify demonstrations to mitigate its misleading effects. However, diverse demonstrations pose challenges for effective representations. In this work, we propose ECHO, a self-harmonized chain-of-thought prompting method. It consolidates diverse solution paths into a uniform and effective solution pattern.ECHO demonstrates the best overall performance across three reasoning domains.
- Abstract(参考訳): CoT(Chain-of-Thought)のプロンプトにより、大きな言語モデルが中間ステップを介して複雑な推論を行うことができることが明らかになった。
CoTプロンプトは主に3つのアプローチに分類される。
最初のアプローチでは、'Let's Think by Step''のような素直なプロンプトを使って、回答を得る前にシーケンシャルな思考プロセスを生成する。
第2のアプローチでは、人間によるステップバイステップのデモを使用して、モデルの推論プロセスを導出する。
3つ目は、'Let's Think by Step'で推論されたデモの生成を自動化する。
このアプローチは時に推論エラーを引き起こし、誤解を招く影響を軽減するためにデモを多様化する必要性を強調します。
しかし、多様なデモンストレーションは効果的な表現に挑戦する。
本研究では,自己調和型チェーン・オブ・シークレット・プロンプト法であるECHOを提案する。
多様な解経路を一様かつ効果的な解パターンに集約し、ECHOは3つの推論領域で最高の全体的な性能を示す。
関連論文リスト
- Inverse-RLignment: Inverse Reinforcement Learning from Demonstrations for LLM Alignment [62.05713042908654]
本稿では,これらの課題を克服するために,高品質な実演データを活用する新しいアプローチであるAlignment from Demonstrations (AfD)を紹介する。
AfDをシーケンシャルな意思決定フレームワークで形式化し、報酬信号の欠如というユニークな課題を強調します。
そこで本研究では,AfD に適した報酬モデル上で補間を行う計算効率のよいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-24T15:13:53Z) - Pattern-Aware Chain-of-Thought Prompting in Large Language Models [26.641713417293538]
CoT(Chain-of- Thought)は言語モデルに複雑な多段階推論を誘導する。
このようなタスクにおいて、基礎となる推論パターンがより重要な役割を果たすことを示す。
本稿では,デモパターンの多様性を考慮したプロンプト手法であるPattern-Aware CoTを提案する。
論文 参考訳(メタデータ) (2024-04-23T07:50:00Z) - Soft-Prompting with Graph-of-Thought for Multi-modal Representation Learning [45.517215214938844]
チェーン・オブ・シークレット技術は、マルチモーダルタスクにおいてよく受け入れられている。
マルチモーダル表現学習におけるソフトプロンプトチューニングのためのAgoT(Aggregation-Graph-of-Thought)機構を提案する。
論文 参考訳(メタデータ) (2024-04-06T07:39:44Z) - Contrastive Chain-of-Thought Prompting [74.10511560147293]
本稿では,言語モデル推論を強化するために,思考の対照的な連鎖を提案する。
従来の思考の連鎖と比較して,本手法は妥当かつ無効な推論実証を提供する。
推論ベンチマーク実験により、思考の対照的な連鎖は、思考の連鎖の促進に役立てることができることを示した。
論文 参考訳(メタデータ) (2023-11-15T18:54:01Z) - Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement [50.62461749446111]
Self-Polish(SP)は、与えられた問題を徐々に洗練し、より理解しやすく解けるように誘導することによって、モデルの推論を促進する新しい方法である。
SPは、CoTのような答え/推論サイドの他のすべてのプロンプトメソッドであり、最先端の技術とのシームレスな統合を可能にし、さらなる改善を可能にします。
論文 参考訳(メタデータ) (2023-05-23T19:58:30Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
大規模言語モデル (LLM) は、ステップ・バイ・ステップ・チェーン・オブ・シークレット (CoT) をデモンストレーションとして組み込むことで、様々な推論タスクにおいて高い効果的な性能を達成することができる。
本稿では,イターCoT (Iterative bootstrapping in Chain-of-Thoughts Prompting) を導入する。
論文 参考訳(メタデータ) (2023-04-23T13:54:39Z) - Synthetic Prompting: Generating Chain-of-Thought Demonstrations for
Large Language Models [121.54462976635743]
大規模言語モデルはチェーン・オブ・ソート・プロンプトを使用して様々な推論タスクを実行でき、ステップ・バイ・ステップのデモを通じて回答を見つけることができる。
そこで本研究では,手作りの例を数種類活用して,モデルにさらに多くの例を生成する手法であるSynthetic promptingを紹介する。
本手法は数値的,記号的,アルゴリズム的推論タスクにおいて評価し,既存のプロンプト手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-02-01T17:33:12Z) - Automatic Chain of Thought Prompting in Large Language Models [20.54898481696753]
大規模言語モデル(LLM)は中間的推論ステップを生成することで複雑な推論を行うことができる。
「ステップ・バイ・ステップ」は、デモのための推論チェーンを1つずつ生成します。
自動CoTプロンプト法を提案する。
論文 参考訳(メタデータ) (2022-10-07T12:28:21Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
大規模言語モデルに対して,多段階推論を行うための課題について検討する。
中心的な疑問は、どの推論例が最も効果的なプロンプトを作るかである。
多段階推論のためのシンプルで効果的な例選択方式である複雑性ベースのプロンプトを提案する。
論文 参考訳(メタデータ) (2022-10-03T05:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。