論文の概要: Unitary Synthesis of Clifford+T Circuits with Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2404.14865v4
- Date: Tue, 3 Sep 2024 11:03:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 18:40:27.621093
- Title: Unitary Synthesis of Clifford+T Circuits with Reinforcement Learning
- Title(参考訳): 強化学習によるクリフォード+T回路の単元合成
- Authors: Sebastian Rietsch, Abhishek Y. Dubey, Christian Ufrecht, Maniraman Periyasamy, Axel Plinge, Christopher Mutschler, Daniel D. Scherer,
- Abstract要約: ユニタリ合成は、与えられたユニタリを表す量子回路を特定することを目的としている。
木探索法 Gumbel AlphaZero を用いて、正確に合成可能な Clifford+T ユニタリの部分集合の問題を解く。
提案手法は,最大60ゲートのランダム化回路から生成した最大5キュービットの回路を効果的に合成する。
- 参考スコア(独自算出の注目度): 2.4646794072984477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a deep reinforcement learning approach for synthesizing unitaries into quantum circuits. Unitary synthesis aims to identify a quantum circuit that represents a given unitary while minimizing circuit depth, total gate count, a specific gate count, or a combination of these factors. While past research has focused predominantly on continuous gate sets, synthesizing unitaries from the parameter-free Clifford+T gate set remains a challenge. Although the time complexity of this task will inevitably remain exponential in the number of qubits for general unitaries, reducing the runtime for simple problem instances still poses a significant challenge. In this study, we apply the tree-search method Gumbel AlphaZero to solve the problem for a subset of exactly synthesizable Clifford+T unitaries. Our method effectively synthesizes circuits for up to five qubits generated from randomized circuits with up to 60 gates, outperforming existing tools like QuantumCircuitOpt and MIN-T-SYNTH in terms of synthesis time for larger qubit counts. Furthermore, it surpasses Synthetiq in successfully synthesizing random, exactly synthesizable unitaries. These results establish a strong baseline for future unitary synthesis algorithms.
- Abstract(参考訳): 本稿では,量子回路にユニタリを合成する深層強化学習手法を提案する。
ユニタリ合成は、回路深さ、総ゲート数、特定のゲート数、またはこれらの組み合わせを最小化しながら、与えられたユニタリを表す量子回路を特定することを目的としている。
過去の研究は主に連続ゲート集合に焦点を当ててきたが、パラメータフリーなクリフォード+Tゲート集合からユニタリを合成することは依然として困難である。
このタスクの時間的複雑さは、一般的なユニタリーのキュービット数では必然的に指数関数的であり続けるが、単純な問題インスタンスのランタイムを減らすことは、依然として大きな課題である。
本研究では,木探索法であるGumbel AlphaZeroを用いて,正確に合成可能なClifford+Tユニタリの部分集合の問題を解く。
提案手法は,60個のゲートを持つランダム化回路から生成した最大5量子ビットの回路を効果的に合成し,より大きな量子ビット数に対する合成時間において,QuantumCircuitOptやMIN-T-SYNTHといった既存のツールより優れている。
さらに、ランダムで正確に合成可能なユニタリの合成に成功し、Synthetiqを上回っている。
これらの結果は、将来のユニタリ合成アルゴリズムの強力なベースラインを確立する。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Improving Quantum Circuit Synthesis with Machine Learning [0.7894596908025954]
機械学習をユニタリデータセットに適用することで、合成アルゴリズムの大幅な高速化が可能になることを示す。
本稿では,学習モデルを用いたシード合成アルゴリズムQSeedについて述べる。
論文 参考訳(メタデータ) (2023-06-09T01:53:56Z) - Partitioning Quantum Chemistry Simulations with Clifford Circuits [1.0286890995028481]
現在の量子コンピューティングハードウェアは、少数でノイズの多い量子ビットの可用性によって制限されている。
量子回路の枠組みに留まりながら,古典的および近古典的処理の限界について検討する。
論文 参考訳(メタデータ) (2023-03-02T13:05:19Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
この研究は、局所量子回路の出力分布の学習可能性に関する広範な評価を提供する。
ハイブリッド量子古典アルゴリズムを含む多種多様な学習アルゴリズムにおいて、深度$d=omega(log(n))$ Clifford回路に関連する生成的モデリング問題さえも困難であることを示す。
論文 参考訳(メタデータ) (2022-07-07T08:04:15Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - Clifford Circuit Optimization with Templates and Symbolic Pauli Gates [11.978356827088595]
クリフォード群(Clifford group)は、アダマール、CNOT、位相ゲートによって生成されるユニタリ群の有限部分群である。
ここでは、与えられたクリフォード群要素を実装する短い量子回路を見つける問題を考察する。
本手法は、全量子ビット接続を前提としたエンタングルゲート数を最小限にすることを目的としている。
論文 参考訳(メタデータ) (2021-05-05T19:18:35Z) - Efficient CNOT Synthesis for NISQ Devices [1.0152838128195467]
ノイズの多い中間スケール量子(NISQ)の時代、実際の量子デバイス上で量子アルゴリズムを実行することは、ユニークな課題に直面している。
この問題を解決するために,トークン還元法と呼ばれるCNOT合成法を提案する。
我々のアルゴリズムは、テストされた全ての量子アーキテクチャにおいて、最も広くアクセス可能なアルゴリズムよりも一貫して優れています。
論文 参考訳(メタデータ) (2020-11-12T15:13:32Z) - A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz [68.8204255655161]
本稿では,変分量子固有解法(VQE)アルゴリズムのコンパイル戦略について述べる。
我々は、回路深さとゲート数を減らすために、ユニタリ結合クラスタ(UCC)アンサッツを使用する。
論文 参考訳(メタデータ) (2020-07-20T22:26:16Z) - Topological Quantum Compiling with Reinforcement Learning [7.741584909637626]
任意の単一ビットゲートを有限の普遍集合から基本ゲートの列にコンパイルする効率的なアルゴリズムを導入する。
このアルゴリズムは、量子物理学における深層学習の興味深い応用への新たな道を開くことができる。
論文 参考訳(メタデータ) (2020-04-09T18:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。