Enhancing Textual Personality Detection toward Social Media: Integrating Long-term and Short-term Perspectives
- URL: http://arxiv.org/abs/2404.15067v1
- Date: Tue, 23 Apr 2024 14:13:53 GMT
- Title: Enhancing Textual Personality Detection toward Social Media: Integrating Long-term and Short-term Perspectives
- Authors: Haohao Zhu, Xiaokun Zhang, Junyu Lu, Youlin Wu, Zewen Bai, Changrong Min, Liang Yang, Bo Xu, Dongyu Zhang, Hongfei Lin,
- Abstract summary: Textual personality detection aims to identify personality characteristics by analyzing user-generated content toward social media platforms.
Recent literature highlighted that personality encompasses both long-term stable traits and short-term dynamic states.
- Score: 21.548313630700033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Textual personality detection aims to identify personality characteristics by analyzing user-generated content toward social media platforms. Numerous psychological literature highlighted that personality encompasses both long-term stable traits and short-term dynamic states. However, existing studies often concentrate only on either long-term or short-term personality representations, without effectively combining both aspects. This limitation hinders a comprehensive understanding of individuals' personalities, as both stable traits and dynamic states are vital. To bridge this gap, we propose a Dual Enhanced Network(DEN) to jointly model users' long-term and short-term personality for textual personality detection. In DEN, a Long-term Personality Encoding is devised to effectively model long-term stable personality traits. Short-term Personality Encoding is presented to capture short-term dynamic personality states. The Bi-directional Interaction component facilitates the integration of both personality aspects, allowing for a comprehensive representation of the user's personality. Experimental results on two personality detection datasets demonstrate the effectiveness of the DEN model and the benefits of considering both the dynamic and stable nature of personality characteristics for textual personality detection.
Related papers
- Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
Personality recognition aims to identify the personality traits implied in user data such as dialogues and social media posts.
We propose a novel task named Explainable Personality Recognition, aiming to reveal the reasoning process as supporting evidence of the personality trait.
arXiv Detail & Related papers (2024-09-29T14:41:43Z) - EERPD: Leveraging Emotion and Emotion Regulation for Improving Personality Detection [19.98674724777821]
We propose a new personality detection method called EERPD.
This method introduces the use of emotion regulation, a psychological concept highly correlated with personality, for personality prediction.
Experimental results demonstrate that EERPD significantly enhances the accuracy and robustness of personality detection.
arXiv Detail & Related papers (2024-06-23T11:18:55Z) - Is persona enough for personality? Using ChatGPT to reconstruct an agent's latent personality from simple descriptions [2.6080756513915824]
Personality, a fundamental aspect of human cognition, contains a range of traits that influence behaviors, thoughts, and emotions.
This paper explores the capabilities of large language models (LLMs) in reconstructing these complex cognitive attributes based only on simple descriptions containing socio-demographic and personality type information.
arXiv Detail & Related papers (2024-06-18T02:32:57Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Editing Personality for Large Language Models [73.59001811199823]
This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs)
We construct PersonalityEdit, a new benchmark dataset to address this task.
arXiv Detail & Related papers (2023-10-03T16:02:36Z) - CharacterChat: Learning towards Conversational AI with Personalized
Social Support [61.20396854093821]
We introduce the Social Support Conversation (S2Conv) framework.
It comprises a series of support agents and the interpersonal matching mechanism, linking individuals with persona-compatible virtual supporters.
We present CharacterChat, a comprehensive S2Conv system, which includes a conversational model driven by personas and memories.
arXiv Detail & Related papers (2023-08-20T14:24:26Z) - Identifying and Manipulating the Personality Traits of Language Models [9.213700601337383]
We investigate whether perceived personality in language models is exhibited consistently in their language generation.
We show that language models such as BERT and GPT2 can consistently identify and reflect personality markers in different contexts.
This behavior illustrates an ability to be manipulated in a highly predictable way, and frames them as tools for identifying personality traits and controlling personas in applications such as dialog systems.
arXiv Detail & Related papers (2022-12-20T14:24:11Z) - Domain-specific Learning of Multi-scale Facial Dynamics for Apparent
Personality Traits Prediction [3.19935268158731]
We propose a novel video-based automatic personality traits recognition approach.
It consists of: (1) a textbfdomain-specific facial behavior modelling module that extracts personality-related multi-scale short-term human facial behavior features; (2) a textbflong-term behavior modelling module that summarizes all short-term features of a video as a long-term/video-level personality representation; and (3) a textbfmulti-task personality traits prediction module that models underlying relationship among all traits and jointly predict them based on the video-level personality representation.
arXiv Detail & Related papers (2022-09-09T07:08:55Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
We infer the Myers-Briggs Personality Type indicators by applying a novel multi-view fusion framework, called "PERS"
Our experimental results demonstrate the PERS's ability to learn from multi-view data for personality profiling by efficiently leveraging on the significantly different data arriving from diverse social multimedia sources.
arXiv Detail & Related papers (2021-06-20T10:48:49Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
We present a novel peer-to-peer Hindi conversation dataset- Vyaktitv.
It consists of high-quality audio and video recordings of the participants, with Hinglish textual transcriptions for each conversation.
The dataset also contains a rich set of socio-demographic features, like income, cultural orientation, amongst several others, for all the participants.
arXiv Detail & Related papers (2020-08-31T17:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.