論文の概要: Using ARIMA to Predict the Expansion of Subscriber Data Consumption
- arxiv url: http://arxiv.org/abs/2404.15095v1
- Date: Tue, 23 Apr 2024 14:49:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 13:32:19.124281
- Title: Using ARIMA to Predict the Expansion of Subscriber Data Consumption
- Title(参考訳): ARIMAを用いた加入者データ消費の拡大予測
- Authors: Mike Wa Nkongolo,
- Abstract要約: 本研究は,ARIMAモデルの性能を様々な指標を用いて評価し,加入者の利用傾向を予測する時系列予測について検討した。
この研究は、新たな予測モデルの調査や、加入者データ利用に影響を与える他の要因を検討するなど、研究の今後の方向性を示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study discusses how insights retrieved from subscriber data can impact decision-making in telecommunications, focusing on predictive modeling using machine learning techniques such as the ARIMA model. The study explores time series forecasting to predict subscriber usage trends, evaluating the ARIMA model's performance using various metrics. It also compares ARIMA with Convolutional Neural Network (CNN) models, highlighting ARIMA's superiority in accuracy and execution speed. The study suggests future directions for research, including exploring additional forecasting models and considering other factors affecting subscriber data usage.
- Abstract(参考訳): 本研究では,ARIMAモデルのような機械学習技術を用いた予測モデルに着目し,加入者データから得られる洞察が通信における意思決定に与える影響について考察する。
本研究は,ARIMAモデルの性能を様々な指標を用いて評価し,加入者の利用傾向を予測する時系列予測について検討した。
また、ARIMAとCNN(Convolutional Neural Network)モデルを比較し、精度と実行速度におけるARIMAの優位性を強調している。
この研究は、新たな予測モデルの調査や、加入者データ利用に影響を与える他の要因を検討するなど、研究の今後の方向性を示唆している。
関連論文リスト
- Who should I trust? A Visual Analytics Approach for Comparing Net Load Forecasting Models [0.562479170374811]
本稿では,ディープラーニングに基づくネット負荷予測モデルと,確率的ネット負荷予測のための他のモデルとの比較を目的とした,ビジュアル分析に基づくアプリケーションを提案する。
このアプリケーションは慎重に選択された視覚分析の介入を採用しており、ユーザーは異なる太陽透過レベル、データセットの解像度、数ヵ月間の1日の時間におけるモデルパフォーマンスの違いを識別することができる。
論文 参考訳(メタデータ) (2024-07-31T02:57:21Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Comparative Evaluation of Weather Forecasting using Machine Learning
Models [2.0971479389679337]
本研究では,ダッカ市の1つの気象観測所から得られた20年間のデータセットを用いて,降水パターンと降水パターンの予測における機械学習アルゴリズムの寄与を分析することに焦点を当てた。
グラディエントブースティング、AdaBoosting、Artificial Neural Network、Stacking Random Forest、Stacking Neural Network、Stacking KNNなどのアルゴリズムを評価して比較する。
論文 参考訳(メタデータ) (2024-02-02T08:25:28Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Comparative Study of Predicting Stock Index Using Deep Learning Models [0.0]
本研究では,ARIMA,SARIMA,SARIMAXなどの従来の予測手法と,DF-RNN,DSSM,Deep ARといった新しいニューラルネットワークアプローチを評価する。
その結果,Deep ARは従来のディープラーニングや従来のアプローチよりも優れており,MAPEは0.01,RMSEは189であった。
論文 参考訳(メタデータ) (2023-06-24T10:38:08Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
我々は、モデル選択に影響を及ぼす可能性のある重要な要因の観点から、複数のモデリング問題に対して異なるモデリングアプローチを体系的に比較する。
その結果,非凝集性予測性能が最も高いモデルでは,行動指標やアグリゲーションモードのシェアが低下することが示唆された。
MNLモデルは様々な状況において堅牢に機能するが、ML手法はWillingness to Payのような行動指標の推定を改善することができる。
論文 参考訳(メタデータ) (2023-01-11T11:10:32Z) - Device Modeling Bias in ReRAM-based Neural Network Simulations [1.5490932775843136]
ジャンプテーブルのようなデータ駆動モデリングアプローチは、ニューラルネットワークシミュレーションのためのメモリデバイスをモデル化することを約束している。
本研究では,様々なジャンプテーブルデバイスモデルが達成したネットワーク性能評価に与える影響について検討する。
MNISTでトレーニングされた多層パーセプトロンの結果は、バイナリに基づくデバイスモデルが予測不可能に振る舞うことを示した。
論文 参考訳(メタデータ) (2022-11-29T04:45:06Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Leveraging Multiple Relations for Fashion Trend Forecasting Based on
Social Media [72.06420633156479]
Relation Enhanced Attention Recurrent(REAR)ネットワークという改良モデルを提案する。
KERNと比較して、REARモデルはファッション要素間の関係だけでなく、ユーザグループ間の関係も活用する。
長期トレンド予測の性能をさらに向上させるために、REAR法はスライディング時間的注意メカニズムを考案する。
論文 参考訳(メタデータ) (2021-05-07T14:52:03Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGCは、低リソース環境でより正確で堅牢な学習を実現することを目的とした、新しい生成データ拡張手法である。
G-DAUGCは、バックトランスレーションに基づく既存のデータ拡張手法を一貫して上回っている。
分析の結果,G-DAUGCは多種多様な流線型学習例を産出し,その選択と学習アプローチが性能向上に重要であることが示された。
論文 参考訳(メタデータ) (2020-04-24T06:12:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。