論文の概要: Setting up the Data Printer with Improved English to Ukrainian Machine Translation
- arxiv url: http://arxiv.org/abs/2404.15196v1
- Date: Tue, 23 Apr 2024 16:34:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 13:12:44.815208
- Title: Setting up the Data Printer with Improved English to Ukrainian Machine Translation
- Title(参考訳): 英語からウクライナ語への機械翻訳を改良したデータプリンタのセットアップ
- Authors: Yurii Paniv, Dmytro Chaplynskyi, Nikita Trynus, Volodymyr Kyrylov,
- Abstract要約: ウクライナ語と英語の文の3M対のノイズの多い並列データセットを用いた翻訳システムを構築するためのレシピを提案する。
我々のデコーダのみのモデルであるDragomanは、FLORESデベロップメントセットのアーティファクトエンコーダ-デコーダモデルの性能を上回りました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: To build large language models for Ukrainian we need to expand our corpora with large amounts of new algorithmic tasks expressed in natural language. Examples of task performance expressed in English are abundant, so with a high-quality translation system our community will be enabled to curate datasets faster. To aid this goal, we introduce a recipe to build a translation system using supervised finetuning of a large pretrained language model with a noisy parallel dataset of 3M pairs of Ukrainian and English sentences followed by a second phase of training using 17K examples selected by k-fold perplexity filtering on another dataset of higher quality. Our decoder-only model named Dragoman beats performance of previous state of the art encoder-decoder models on the FLORES devtest set.
- Abstract(参考訳): ウクライナ語のための大規模な言語モデルを構築するには、自然言語で表現された大量の新しいアルゴリズムタスクでコーパスを拡張する必要がある。
英語で表現されたタスクパフォーマンスの例は豊富であるため、高品質な翻訳システムでは、コミュニティがデータセットを高速にキュレートすることが可能になります。
この目的を達成するために、ウクライナ語と英語の3M対のノイズの多い並列データセットを用いた大規模事前学習言語モデルの教師付き微調整を用いた翻訳システムの構築法を紹介し、それに続いて、k-fold perplexity filtering(k-fold perplexity filtering)によって選択された17K例を高品質のデータセット上で選択した第2フェーズのトレーニングを行う。
我々のデコーダのみのモデルであるDragomanは、FLORESのデペレーティングセットにおける従来の最先端のエンコーダ-デコーダモデルのパフォーマンスを上回りました。
関連論文リスト
- Relay Decoding: Concatenating Large Language Models for Machine Translation [21.367605327742027]
我々はRD(Relay Decoding)と呼ばれる革新的なアプローチを提案し、ソースとターゲット言語を個別にサポートする2つの異なる大規模モデルを結合する。
これら2つのモデル間の接続を容易にするための単純なマッピング層を導入し、訓練に限られた並列データを活用することにより、機械翻訳タスクにおいて優れた結果が得られた。
論文 参考訳(メタデータ) (2024-05-05T13:42:25Z) - Strategies for improving low resource speech to text translation relying
on pre-trained ASR models [59.90106959717875]
本稿では,テキスト翻訳(ST)における低音源音声の性能向上のための技術と知見について述べる。
本研究は,英語とポルトガル語,タマシェク語とフランス語の2つの言語対について,シミュレーションおよび実低資源設定について実験を行った。
論文 参考訳(メタデータ) (2023-05-31T21:58:07Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline
Shared Task [92.5087402621697]
本稿では,IWSLT 2022オフラインタスクに対するエンドツーエンドYiTrans音声翻訳システムの提案について述べる。
YiTransシステムは、大規模な訓練済みエンコーダデコーダモデル上に構築されている。
最終提出は自動評価基準でまず英語・ドイツ語・英語・中国語のエンド・ツー・エンド・システムにランク付けする。
論文 参考訳(メタデータ) (2022-06-12T16:13:01Z) - Paraphrastic Representations at Scale [134.41025103489224]
私たちは、英語、アラビア語、ドイツ語、フランス語、スペイン語、ロシア語、トルコ語、中国語の訓練されたモデルをリリースします。
我々はこれらのモデルを大量のデータでトレーニングし、元の論文から大幅に性能を向上した。
論文 参考訳(メタデータ) (2021-04-30T16:55:28Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
我々は真の多言語多言語翻訳モデルを作成し、100言語のいずれかのペア間で直接翻訳できる。
大規模なマイニングによって生成された教師付きデータで、数千の言語方向をカバーするトレーニングデータセットを構築し、オープンソースにしています。
WMTのベストシングルシステムに競争力を持たせながら、非英語の方向を直接翻訳する場合、非英語モデルに焦点をあてると10 BLEU以上のゲインが得られる。
論文 参考訳(メタデータ) (2020-10-21T17:01:23Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - The Tatoeba Translation Challenge -- Realistic Data Sets for Low
Resource and Multilingual MT [0.0]
本稿では,何千もの言語ペアに対するトレーニングとテストデータを提供する機械翻訳のための新しいベンチマークの開発について述べる。
主な目標は、世界言語をより広範囲にカバーしたオープン翻訳ツールとモデルの開発をトリガーすることである。
論文 参考訳(メタデータ) (2020-10-13T13:12:21Z) - scb-mt-en-th-2020: A Large English-Thai Parallel Corpus [3.3072037841206354]
我々は100万以上のセグメント対を持つ英タイ機械翻訳データセットを構築した。
このデータセットに基づいて機械翻訳モデルを訓練する。
データセット、事前トレーニングされたモデル、私たちの作業を再現するソースコードは、パブリックに利用できます。
論文 参考訳(メタデータ) (2020-07-07T15:14:32Z) - Machine Translation Pre-training for Data-to-Text Generation -- A Case
Study in Czech [5.609443065827995]
非英語言語におけるデータ・テキスト生成における機械翻訳に基づく事前学習の有効性について検討する。
事前トレーニングによって、パフォーマンスを大幅に向上したエンドツーエンドモデルのトレーニングが可能になります。
論文 参考訳(メタデータ) (2020-04-05T02:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。