論文の概要: Real-time Lane-wise Traffic Monitoring in Optimal ROIs
- arxiv url: http://arxiv.org/abs/2404.15212v1
- Date: Fri, 29 Mar 2024 01:08:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-28 11:06:36.860172
- Title: Real-time Lane-wise Traffic Monitoring in Optimal ROIs
- Title(参考訳): 最適ROIにおけるリアルタイム車線交通モニタリング
- Authors: Mei Qiu, Wei Lin, Lauren Ann Christopher, Stanley Chien, Yaobin Chen, Shu Hu,
- Abstract要約: 米国では、何千ものパン、ティルト、Zoom(PTZ)の交通カメラが高速道路の状態を監視しています。
本稿では,これらのカメラからハイウェイレーンの位置と交通方向を自動で学習する新しいシステムを提案する。
リアルタイムで車線固有のトラフィックデータを継続的に収集し、カメラの角度やズームの変化も調整する。
- 参考スコア(独自算出の注目度): 12.549381266302959
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the US, thousands of Pan, Tilt, and Zoom (PTZ) traffic cameras monitor highway conditions. There is a great interest in using these highway cameras to gather valuable road traffic data to support traffic analysis and decision-making for highway safety and efficient traffic management. However, there are too many cameras for a few human traffic operators to effectively monitor, so a fully automated solution is desired. This paper introduces a novel system that learns the locations of highway lanes and traffic directions from these camera feeds automatically. It collects real-time, lane-specific traffic data continuously, even adjusting for changes in camera angle or zoom. This facilitates efficient traffic analysis, decision-making, and improved highway safety.
- Abstract(参考訳): 米国では、何千ものパン、ティルト、Zoom(PTZ)の交通カメラが高速道路の状態を監視しています。
高速道路の安全と効率的な交通管理のための交通分析と意思決定を支援するために,道路交通データ収集にこれらのハイウェイカメラを使うことに大きな関心がある。
しかし、少数の人間の交通オペレーターが効果的に監視するにはカメラが多すぎるため、完全に自動化された解決策が望まれる。
本稿では,これらのカメラからハイウェイレーンの位置と交通方向を自動で学習する新しいシステムを提案する。
リアルタイムで車線固有のトラフィックデータを継続的に収集し、カメラの角度やズームの変化も調整する。
これにより、効率的な交通分析、意思決定、高速道路の安全性の向上が促進される。
関連論文リスト
- TrafficLoc: Localizing Traffic Surveillance Cameras in 3D Scenes [49.43995864524434]
我々は,交通監視カメラを協調的な認識で位置決めする問題に取り組む。
我々は,新しいニューラルネットワークであるTrafficLocを導入し,交通カメラを3次元参照マップ内にローカライズする。
実験の結果,我々のTrafficLocは,最先端のイメージ・ツー・ポイント・クラウド登録方式よりも位置決め精度が向上していることがわかった。
論文 参考訳(メタデータ) (2024-12-13T17:42:53Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
本稿では,自動走行車に特化して設計された最先端道路側認識システムであるMSightについて述べる。
MSightは、リアルタイムの車両検出、ローカライゼーション、トラッキング、短期的な軌道予測を提供する。
評価は、待ち時間を最小限にしてレーンレベルの精度を維持するシステムの能力を強調している。
論文 参考訳(メタデータ) (2023-10-08T21:32:30Z) - Prior Based Online Lane Graph Extraction from Single Onboard Camera
Image [133.68032636906133]
単眼カメラ画像からレーングラフをオンラインに推定する。
前者は、トランスフォーマーベースのWasserstein Autoencoderを通じてデータセットから抽出される。
オートエンコーダは、最初のレーングラフ推定を強化するために使用される。
論文 参考訳(メタデータ) (2023-07-25T08:58:26Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - Recognition and Co-Analysis of Pedestrian Activities in Different Parts
of Road using Traffic Camera Video [2.414050294189755]
本研究の目的は,停留所とミッドブロック交差点との相関関係を明らかにすることである。
本手法は,周辺交差点に設置した市販CCTVパンティルトゾーム(PTZ)トラヒック監視カメラから,交通カメラビデオを用いてバス停の使用状況を特定する手法を拡張した。
また,横断イベントのみを表示するビデオクリップの自動作成により,歩行者行動検出のマニュアルレビューを容易にするWebポータルも実装した。
論文 参考訳(メタデータ) (2021-11-27T05:46:41Z) - Turning Traffic Monitoring Cameras into Intelligent Sensors for Traffic
Density Estimation [9.096163152559054]
本稿では,4L特性の未校正交通監視カメラを用いて,交通密度を推定するためのフレームワークを提案する。
提案するフレームワークは,カメラキャリブレーションと車両検出という2つの主要コンポーネントで構成されている。
その結果, カメラキャリブレーションにおける平均絶対誤差 (MAE) は6m中0.2m未満であり, 各種条件下での車両検出精度は約90%であった。
論文 参考訳(メタデータ) (2021-10-29T15:39:06Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Traffic-Net: 3D Traffic Monitoring Using a Single Camera [1.1602089225841632]
我々は,1台のCCTVトラヒックカメラを用いたリアルタイムトラヒック監視のための実用的なプラットフォームを提供する。
車両・歩行者検出のためのカスタムYOLOv5ディープニューラルネットワークモデルとSORT追跡アルゴリズムの改良を行った。
また、短時間・長期の時間的ビデオデータストリームに基づく階層的なトラフィックモデリングソリューションも開発している。
論文 参考訳(メタデータ) (2021-09-19T16:59:01Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - HOG, LBP and SVM based Traffic Density Estimation at Intersection [4.199844472131922]
車両の大量輸送は交通渋滞、不要な遅延、汚染、損失、健康問題、事故、緊急車両の通行、交通違反を引き起こす。
従来の交通管理・制御システムではこの問題に対処できない。
交通流の効率を高めるために最適化された、賢明な制御システムが必要である。
論文 参考訳(メタデータ) (2020-05-04T18:08:35Z) - An IoT-Based System: Big Urban Traffic Data Mining Through Airborne
Pollutant Gases Analysis [0.0]
イランなどの発展途上国では、人口の増加により車両の数が増加している。
交通警察官による交通渋滞を抑え、効率的に経路を拡大し、市民による交通の減少に最適な方法を選択する必要がある。
今日では、交通警察や都市交通管制システムなど多くの交通機関が、交通カメラ、誘導センサー、衛星画像、レーダーセンサー、超音波技術、電波識別(RFID)を都市交通診断に利用している。
本稿で提案する手法は,大気汚染量を算出して交通渋滞を発生させるスマートシステムを含むIOTに基づく交通渋滞の検出である。
論文 参考訳(メタデータ) (2020-02-15T13:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。