論文の概要: Towards Large-Scale Training of Pathology Foundation Models
- arxiv url: http://arxiv.org/abs/2404.15217v1
- Date: Sun, 24 Mar 2024 21:34:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-28 11:06:36.854866
- Title: Towards Large-Scale Training of Pathology Foundation Models
- Title(参考訳): 病理基礎モデルの大規模研修に向けて
- Authors: kaiko. ai, Nanne Aben, Edwin D. de Jong, Ioannis Gatopoulos, Nicolas Känzig, Mikhail Karasikov, Axel Lagré, Roman Moser, Joost van Doorn, Fei Tang,
- Abstract要約: 我々は、オープンアクセスTCGA全体のスライドイメージに基づいてトレーニングされた、私たちの病理FMの最初のバッチを公開し、公開します。
実験により,我々のモデルが様々なパッチレベル下流タスクにおける最先端の性能に達することを示す。
本稿では,様々な下流タスクを対象としたFMの一貫性のある評価を目的としたオープンソースフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.5861468117231254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driven by the recent advances in deep learning methods and, in particular, by the development of modern self-supervised learning algorithms, increased interest and efforts have been devoted to build foundation models (FMs) for medical images. In this work, we present our scalable training pipeline for large pathology imaging data, and a comprehensive analysis of various hyperparameter choices and training techniques for building pathology FMs. We release and make publicly available the first batch of our pathology FMs (https://github.com/kaiko-ai/towards_large_pathology_fms) trained on open-access TCGA whole slide images, a commonly used collection of pathology images. The experimental evaluation shows that our models reach state-of-the-art performance on various patch-level downstream tasks, ranging from breast cancer subtyping to colorectal nuclear segmentation. Finally, to unify the evaluation approaches used in the field and to simplify future comparisons of different FMs, we present an open-source framework (https://github.com/kaiko-ai/eva) designed for the consistent evaluation of pathology FMs across various downstream tasks.
- Abstract(参考訳): 近年の深層学習法の発展、特に近代的な自己教師付き学習アルゴリズムの発展により、医療画像の基礎モデル(FM)構築への関心と努力が高まっている。
本研究では,大規模な病理画像データのためのスケーラブルなトレーニングパイプラインと,さまざまなハイパーパラメータ選択とFM構築のためのトレーニング手法の包括的解析について述べる。
我々は、オープンアクセスのTCGA全スライドイメージに基づいてトレーニングされたFM(https://github.com/kaiko-ai/towards_large_pathology_fms)の最初のバッチを公開し、公開する。
実験により, 乳がんの亜型化から大腸癌の核分節化まで, パッチレベル下流の様々な課題において, 最先端の性能に達することが確認された。
最後に、フィールドで使用される評価手法を統一し、異なるFMの将来の比較を簡素化するために、様々な下流タスクにおけるFMの一貫性のある評価を目的としたオープンソースフレームワーク(https://github.com/kaiko-ai/eva)を提案する。
関連論文リスト
- MedDiff-FM: A Diffusion-based Foundation Model for Versatile Medical Image Applications [10.321593505248341]
本稿では,MedDiff-FMという,様々な医療画像課題に対処するための拡散基盤モデルを提案する。
MedDiff-FMは、頭から腹部まで解剖学的領域をカバーする複数の公開データセットから3D CT画像を活用し、拡散基盤モデルを事前訓練する。
MedDiff-FMが下流の様々な医療画像タスクに有効であることを示す実験結果が得られた。
論文 参考訳(メタデータ) (2024-10-20T16:03:55Z) - Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation? [10.20366295974822]
本稿では,2つの最先端デコーダヘッドであるHSAMとHQSAMの要素を統合し,セグメンテーション性能を向上させる新しいデコーダヘッドアーキテクチャであるHQHSAMを紹介する。
種々の解剖学やモダリティを含む複数のデータセットに対する実験により,FM,特にHQHSAMデコードヘッドを用いて,医用画像分割のための領域一般化が向上したことが明らかとなった。
論文 参考訳(メタデータ) (2024-09-12T11:41:35Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
肺がんサブタイプを多次元・多モード画像で正確に分類するための新しい深層学習ネットワークを提案する。
提案モデルの強みは, 対のCT-病理画像セットと独立のCT画像セットの両方を動的に処理できることにある。
また,ネットワーク学習を通じてモダリティ関係を定量的にマッピングするコントラスト制約モジュールも開発した。
論文 参考訳(メタデータ) (2024-07-18T01:42:00Z) - PathoWAve: A Deep Learning-based Weight Averaging Method for Improving Domain Generalization in Histopathology Images [13.362177469092963]
病理画像解析における領域シフト現象に対処するために,病理量平均化(PathoWAve)を導入する。
The results on Camelyon17 WILDS dataset shows PathoWAve's superiority than previous proposed method。
論文 参考訳(メタデータ) (2024-06-21T23:25:44Z) - PathoDuet: Foundation Models for Pathological Slide Analysis of H&E and IHC Stains [5.422494000842841]
PathoDuetは、病理組織像の事前訓練された一連のモデルであり、組織化学における新しい自己教師型学習フレームワークである。
このフレームワークは、新しく導入されたプリテキストトークンと後続のタスクライザーによって特徴付けられ、画像間の特定の関係を明示的に活用する。
クロススケール位置決めとクロスステイン転送という2つのプレテキストタスクは、モデルがヘマトキシリンとエオシンの画像で事前訓練されるように設計されている。
論文 参考訳(メタデータ) (2023-12-15T15:45:52Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - Domain Generalization on Medical Imaging Classification using Episodic
Training with Task Augmentation [62.49837463676111]
本稿では,医用画像分類におけるタスク強化によるエピソードトレーニングの新たな手法を提案する。
実際の医療展開において、限られた数のソースドメインによって動機付けられ、ユニークなタスクレベルのオーバーフィッティングを検討します。
論文 参考訳(メタデータ) (2021-06-13T03:56:59Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
機械学習とコンピュータビジョン手法は、医用画像解析において優れた性能を示している。
しかし、現在臨床応用はごくわずかである。
異なるソースや取得ドメインのデータへのモデルの不適切な転送性は、その理由の1つです。
論文 参考訳(メタデータ) (2020-10-14T16:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。