Maximum Discrepancy Generative Regularization and Non-Negative Matrix Factorization for Single Channel Source Separation
- URL: http://arxiv.org/abs/2404.15296v1
- Date: Tue, 26 Mar 2024 15:16:01 GMT
- Title: Maximum Discrepancy Generative Regularization and Non-Negative Matrix Factorization for Single Channel Source Separation
- Authors: Martin Ludvigsen, Markus Grasmair,
- Abstract summary: In this paper, we will apply the idea of adversarial learning of regularization functionals to the training of generative models.
We show in numerical experiments, both for image and audio separation, that this leads to a clear improvement of the reconstructed signals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The idea of adversarial learning of regularization functionals has recently been introduced in the wider context of inverse problems. The intuition behind this method is the realization that it is not only necessary to learn the basic features that make up a class of signals one wants to represent, but also, or even more so, which features to avoid in the representation. In this paper, we will apply this approach to the training of generative models, leading to what we call Maximum Discrepancy Generative Regularization. In particular, we apply this to problem of source separation by means of Non-negative Matrix Factorization (NMF) and present a new method for the adversarial training of NMF bases. We show in numerical experiments, both for image and audio separation, that this leads to a clear improvement of the reconstructed signals, in particular in the case where little or no strong supervision data is available.
Related papers
- Using Part-based Representations for Explainable Deep Reinforcement Learning [30.566205347443113]
We propose a non-negative training approach for actor models in Deep Reinforcement Learning.
We demonstrate the effectiveness of the proposed approach using the well-known Cartpole benchmark.
arXiv Detail & Related papers (2024-08-21T09:21:59Z) - Learning a Gaussian Mixture for Sparsity Regularization in Inverse
Problems [2.375943263571389]
In inverse problems, the incorporation of a sparsity prior yields a regularization effect on the solution.
We propose a probabilistic sparsity prior formulated as a mixture of Gaussians, capable of modeling sparsity with respect to a generic basis.
We put forth both a supervised and an unsupervised training strategy to estimate the parameters of this network.
arXiv Detail & Related papers (2024-01-29T22:52:57Z) - Adversarial Generative NMF for Single Channel Source Separation [0.0]
We will apply this idea to the problem of source separation by means of non-negative matrix factorization (NMF)
We show in numerical experiments, both for image and audio separation, that this leads to a clear improvement of the reconstructed signals.
arXiv Detail & Related papers (2023-04-24T09:26:43Z) - Federated Representation Learning via Maximal Coding Rate Reduction [109.26332878050374]
We propose a methodology to learn low-dimensional representations from a dataset that is distributed among several clients.
Our proposed method, which we refer to as FLOW, utilizes MCR2 as the objective of choice, hence resulting in representations that are both between-class discriminative and within-class compressible.
arXiv Detail & Related papers (2022-10-01T15:43:51Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations.
We propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.
A novel column-wisely sparse norm, named $ell_2,log$-(pseudo) norm, is proposed to enhance the robustness of the proposed method.
arXiv Detail & Related papers (2022-04-22T11:38:10Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - On the Treatment of Optimization Problems with L1 Penalty Terms via
Multiobjective Continuation [0.0]
We present a novel algorithm that allows us to gain detailed insight into the effects of sparsity in linear and nonlinear optimization.
Our method can be seen as a generalization of well-known homotopy methods for linear regression problems to the nonlinear case.
arXiv Detail & Related papers (2020-12-14T13:00:50Z) - FLAMBE: Structural Complexity and Representation Learning of Low Rank
MDPs [53.710405006523274]
This work focuses on the representation learning question: how can we learn such features?
Under the assumption that the underlying (unknown) dynamics correspond to a low rank transition matrix, we show how the representation learning question is related to a particular non-linear matrix decomposition problem.
We develop FLAMBE, which engages in exploration and representation learning for provably efficient RL in low rank transition models.
arXiv Detail & Related papers (2020-06-18T19:11:18Z) - Theory inspired deep network for instantaneous-frequency extraction and
signal components recovery from discrete blind-source data [1.6758573326215689]
This paper is concerned with the inverse problem of recovering the unknown signal components, along with extraction of their frequencies.
None of the existing decomposition methods and algorithms is capable of solving this inverse problem.
We propose a synthesis of a deep neural network, based directly on a discrete sample set, that may be non-uniformly sampled, of the blind-source signal.
arXiv Detail & Related papers (2020-01-31T18:54:00Z) - Invariant Feature Coding using Tensor Product Representation [75.62232699377877]
We prove that the group-invariant feature vector contains sufficient discriminative information when learning a linear classifier.
A novel feature model that explicitly consider group action is proposed for principal component analysis and k-means clustering.
arXiv Detail & Related papers (2019-06-05T07:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.