Leveraging Visibility Graphs for Enhanced Arrhythmia Classification with Graph Convolutional Networks
- URL: http://arxiv.org/abs/2404.15367v2
- Date: Wed, 04 Dec 2024 00:42:56 GMT
- Title: Leveraging Visibility Graphs for Enhanced Arrhythmia Classification with Graph Convolutional Networks
- Authors: Rafael F. Oliveira, Gladston J. P. Moreira, Vander L. S. Freitas, Eduardo J. S. Luz,
- Abstract summary: This study investigates the use of Visibility Graph (VG) and Vector Visibility Graph (VVG) representations combined with Graph Conal Networks (GCNs) for arrhythmia classification.
Our findings demonstrate that VG and VVG mappings enable GCNs to classify arrhythmias directly from raw ECG signals, without the need for preprocessing or noise removal.
- Score: 0.11184789007828977
- License:
- Abstract: Arrhythmias, detectable through electrocardiograms (ECGs), pose significant health risks, underscoring the need for accurate and efficient automated detection techniques. While recent advancements in graph-based methods have demonstrated potential to enhance arrhythmia classification, the challenge lies in effectively representing ECG signals as graphs. This study investigates the use of Visibility Graph (VG) and Vector Visibility Graph (VVG) representations combined with Graph Convolutional Networks (GCNs) for arrhythmia classification under the ANSI/AAMI standard, ensuring reproducibility and fair comparison with other techniques. Through extensive experiments on the MIT-BIH dataset, we evaluate various GCN architectures and preprocessing parameters. Our findings demonstrate that VG and VVG mappings enable GCNs to classify arrhythmias directly from raw ECG signals, without the need for preprocessing or noise removal. Notably, VG offers superior computational efficiency, while VVG delivers enhanced classification performance by leveraging additional lead features. The proposed approach outperforms baseline methods in several metrics, although challenges persist in classifying the supraventricular ectopic beat (S) class, particularly under the inter-patient paradigm.
Related papers
- DiffuSETS: 12-lead ECG Generation Conditioned on Clinical Text Reports and Patient-Specific Information [13.680337221159506]
Heart disease remains a significant threat to human health.
Scarcity of high-quality ECG data, driven by privacy concerns and limited medical resources, creates a pressing need for effective ECG signal generation.
We propose DiffuSETS, a novel framework capable of generating ECG signals with high semantic alignment and fidelity.
arXiv Detail & Related papers (2025-01-10T12:55:34Z) - Contrastive Graph Condensation: Advancing Data Versatility through Self-Supervised Learning [47.74244053386216]
Graph condensation is a promising solution to synthesize a compact, substitute graph of the large-scale original graph.
We introduce Contrastive Graph Condensation (CTGC), which adopts a self-supervised surrogate task to extract critical, causal information from the original graph.
CTGC excels in handling various downstream tasks with a limited number of labels, consistently outperforming state-of-the-art GC methods.
arXiv Detail & Related papers (2024-11-26T03:01:22Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - Graph Neural Networks for Topological Feature Extraction in ECG
Classification [11.337163242503166]
We propose three techniques for classifying heartbeats using graph neural networks.
The three proposed techniques are capable of making arrhythmia classification predictions with the accuracy of 99.38, 98.76, and 91.93 percent, respectively.
arXiv Detail & Related papers (2023-11-02T16:14:34Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Robust Mid-Pass Filtering Graph Convolutional Networks [47.50194731200042]
Graph convolutional networks (GCNs) are currently the most promising paradigm for dealing with graph-structure data.
Recent studies have also shown that GCNs are vulnerable to adversarial attacks.
We propose a simple yet effective Mid-pass filter GCN (Mid-GCN) to overcome these challenges.
arXiv Detail & Related papers (2023-02-16T03:07:09Z) - Effective classification of ecg signals using enhanced convolutional
neural network in iot [0.0]
This paper proposes a routing system for IoT healthcare platforms based on Dynamic Source Routing (DSR) and Routing by Energy and Link Quality (REL)
Deep-ECG will employ a deep CNN to extract important characteristics, which will then be compared using simple and fast distance functions.
The results show that the proposed strategy outperforms others in terms of classification accuracy.
arXiv Detail & Related papers (2022-02-08T13:37:23Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - A Graph-constrained Changepoint Detection Approach for ECG Segmentation [5.209323879611983]
We introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of R-peak positions without employing any preprocessing step.
Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55.
arXiv Detail & Related papers (2020-04-24T23:41:41Z) - Multi-Lead ECG Classification via an Information-Based Attention
Convolutional Neural Network [1.1720399305661802]
One-dimensional convolutional neural networks (CNN) have proven to be effective in pervasive classification tasks.
We implement the Residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map.
An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task.
arXiv Detail & Related papers (2020-03-25T02:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.