Leveraging Visibility Graphs for Enhanced Arrhythmia Classification with Graph Convolutional Networks
- URL: http://arxiv.org/abs/2404.15367v2
- Date: Wed, 04 Dec 2024 00:42:56 GMT
- Title: Leveraging Visibility Graphs for Enhanced Arrhythmia Classification with Graph Convolutional Networks
- Authors: Rafael F. Oliveira, Gladston J. P. Moreira, Vander L. S. Freitas, Eduardo J. S. Luz,
- Abstract summary: This study investigates the use of Visibility Graph (VG) and Vector Visibility Graph (VVG) representations combined with Graph Conal Networks (GCNs) for arrhythmia classification.<n>Our findings demonstrate that VG and VVG mappings enable GCNs to classify arrhythmias directly from raw ECG signals, without the need for preprocessing or noise removal.
- Score: 0.11184789007828977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Arrhythmias, detectable through electrocardiograms (ECGs), pose significant health risks, underscoring the need for accurate and efficient automated detection techniques. While recent advancements in graph-based methods have demonstrated potential to enhance arrhythmia classification, the challenge lies in effectively representing ECG signals as graphs. This study investigates the use of Visibility Graph (VG) and Vector Visibility Graph (VVG) representations combined with Graph Convolutional Networks (GCNs) for arrhythmia classification under the ANSI/AAMI standard, ensuring reproducibility and fair comparison with other techniques. Through extensive experiments on the MIT-BIH dataset, we evaluate various GCN architectures and preprocessing parameters. Our findings demonstrate that VG and VVG mappings enable GCNs to classify arrhythmias directly from raw ECG signals, without the need for preprocessing or noise removal. Notably, VG offers superior computational efficiency, while VVG delivers enhanced classification performance by leveraging additional lead features. The proposed approach outperforms baseline methods in several metrics, although challenges persist in classifying the supraventricular ectopic beat (S) class, particularly under the inter-patient paradigm.
Related papers
- A Pre-Training and Adaptive Fine-Tuning Framework for Graph Anomaly Detection [67.77204352386897]
Graph anomaly detection (GAD) has garnered increasing attention in recent years, yet it remains challenging due to the scarcity of abnormal nodes and the high cost of label annotations.
We propose PAF, a framework specifically designed for GAD that combines low- and high-pass filters in the pre-training phase to capture the full spectrum of frequency information in node features.
arXiv Detail & Related papers (2025-04-19T09:57:35Z) - A CNN-based Local-Global Self-Attention via Averaged Window Embeddings for Hierarchical ECG Analysis [1.0844302367985357]
We propose a novel Local-Global Attention ECG model (LGA-ECG) to address this limitation.
Our approach extracts queries by averaging embeddings obtained from overlapping convolutional windows.
Experiments conducted on the CODE-15 dataset demonstrate that LGA-ECG outperforms state-of-the-art models.
arXiv Detail & Related papers (2025-04-13T01:21:18Z) - DiffuSETS: 12-lead ECG Generation Conditioned on Clinical Text Reports and Patient-Specific Information [13.680337221159506]
Heart disease remains a significant threat to human health.
Scarcity of high-quality ECG data, driven by privacy concerns and limited medical resources, creates a pressing need for effective ECG signal generation.
We propose DiffuSETS, a novel framework capable of generating ECG signals with high semantic alignment and fidelity.
arXiv Detail & Related papers (2025-01-10T12:55:34Z) - Online Graph Learning via Time-Vertex Adaptive Filters: From Theory to Cardiac Fibrillation [37.69303106863453]
We introduce AdaCGP, an online algorithm for adaptive estimation of the Graph Shift Operator (GSO)
Through simulations, we show that AdaCGP performs consistently well across various graph topologies, and achieves improvements in excess of 82% for GSO estimation.
AdaCGP's ability to track changes in graph structure is demonstrated on recordings of ventricular fibrillation dynamics in response to an anti-arrhythmic drug.
arXiv Detail & Related papers (2024-11-03T13:43:51Z) - RobGC: Towards Robust Graph Condensation [61.259453496191696]
Graph neural networks (GNNs) have attracted widespread attention for their impressive capability of graph representation learning.
However, the increasing prevalence of large-scale graphs presents a significant challenge for GNN training due to their computational demands.
We propose graph condensation (GC) to generate an informative compact graph that enables efficient training of GNNs while retaining performance.
arXiv Detail & Related papers (2024-06-19T04:14:57Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
Graph-based semi-supervised learning (GSSL) has long been a hot research topic.
graph convolutional networks (GCNs) have become the predominant techniques for their promising performance.
arXiv Detail & Related papers (2023-09-24T10:10:21Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Robust Mid-Pass Filtering Graph Convolutional Networks [47.50194731200042]
Graph convolutional networks (GCNs) are currently the most promising paradigm for dealing with graph-structure data.
Recent studies have also shown that GCNs are vulnerable to adversarial attacks.
We propose a simple yet effective Mid-pass filter GCN (Mid-GCN) to overcome these challenges.
arXiv Detail & Related papers (2023-02-16T03:07:09Z) - Learning ECG Representations based on Manipulated Temporal-Spatial
Reverse Detection [11.615287369669971]
We propose a straightforward but effective approach to learn ECG representations.
Inspired by the temporal and spatial characteristics of ECG, we flip the original signals horizontally, vertically, and both horizontally and vertically.
Results show that the ECG representations learned with our method lead to remarkable performances on the downstream task.
arXiv Detail & Related papers (2022-02-25T02:01:09Z) - Effective classification of ecg signals using enhanced convolutional
neural network in iot [0.0]
This paper proposes a routing system for IoT healthcare platforms based on Dynamic Source Routing (DSR) and Routing by Energy and Link Quality (REL)
Deep-ECG will employ a deep CNN to extract important characteristics, which will then be compared using simple and fast distance functions.
The results show that the proposed strategy outperforms others in terms of classification accuracy.
arXiv Detail & Related papers (2022-02-08T13:37:23Z) - Improving Subgraph Recognition with Variational Graph Information
Bottleneck [62.69606854404757]
Subgraph recognition aims at discovering a compressed substructure of a graph that is most informative to the graph property.
This paper introduces a noise injection method to compress the information in the subgraphs, which leads to a novel Variational Graph Information Bottleneck (VGIB) framework.
arXiv Detail & Related papers (2021-12-18T10:51:13Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - A Graph-constrained Changepoint Detection Approach for ECG Segmentation [5.209323879611983]
We introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of R-peak positions without employing any preprocessing step.
Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55.
arXiv Detail & Related papers (2020-04-24T23:41:41Z) - Multi-Lead ECG Classification via an Information-Based Attention
Convolutional Neural Network [1.1720399305661802]
One-dimensional convolutional neural networks (CNN) have proven to be effective in pervasive classification tasks.
We implement the Residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map.
An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task.
arXiv Detail & Related papers (2020-03-25T02:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.