Online Graph Learning via Time-Vertex Adaptive Filters: From Theory to Cardiac Fibrillation
- URL: http://arxiv.org/abs/2411.01567v1
- Date: Sun, 03 Nov 2024 13:43:51 GMT
- Title: Online Graph Learning via Time-Vertex Adaptive Filters: From Theory to Cardiac Fibrillation
- Authors: Alexander Jenkins, Thiernithi Variddhisai, Ahmed El-Medany, Fu Siong Ng, Danilo Mandic,
- Abstract summary: We introduce AdaCGP, an online algorithm for adaptive estimation of the Graph Shift Operator (GSO)
Through simulations, we show that AdaCGP performs consistently well across various graph topologies, and achieves improvements in excess of 82% for GSO estimation.
AdaCGP's ability to track changes in graph structure is demonstrated on recordings of ventricular fibrillation dynamics in response to an anti-arrhythmic drug.
- Score: 37.69303106863453
- License:
- Abstract: Graph Signal Processing (GSP) provides a powerful framework for analysing complex, interconnected systems by modelling data as signals on graphs. Recent advances in GSP have enabled the learning of graph structures from observed signals, but these methods often struggle with time-varying systems and real-time applications. Adaptive filtering techniques, while effective for online learning, have seen limited application in graph topology estimation from a GSP perspective. To this end, we introduce AdaCGP, an online algorithm for adaptive estimation of the Graph Shift Operator (GSO) from multivariate time series. The GSO is estimated from an adaptive time-vertex autoregressive model through recursive update formulae designed to address sparsity, shift-invariance and bias. Through simulations, we show that AdaCGP performs consistently well across various graph topologies, and achieves improvements in excess of 82% for GSO estimation compared to baseline adaptive vector autoregressive models. In addition, our online variable splitting approach for enforcing sparsity enables near-perfect precision in identifying causal connections while maintaining low false positive rates upon optimisation of the forecast error. Finally, AdaCGP's ability to track changes in graph structure is demonstrated on recordings of ventricular fibrillation dynamics in response to an anti-arrhythmic drug. AdaCGP is shown to be able to identify the stability of critical conduction patterns that may be maintaining the arrhythmia in an intuitive way, together with its potential to support diagnosis and treatment strategies.
Related papers
- A Generative Framework for Predictive Modeling of Multiple Chronic Conditions Using Graph Variational Autoencoder and Bandit-Optimized Graph Neural Network [0.0]
Predicting the emergence of multiple chronic conditions (MCC) is crucial for early intervention and personalized healthcare.
Graph neural networks (GNNs) are effective methods for modeling complex graph data, such as those found in MCC.
We propose a novel generative framework for GNNs that constructs a representative underlying graph structure by utilizing the distribution of the data.
arXiv Detail & Related papers (2024-09-20T17:26:38Z) - Online Proximal ADMM for Graph Learning from Streaming Smooth Signals [9.34612743192798]
We develop a novel algorithm for online graph learning using observation streams, assumed to be smooth on the latent graph.
Our modus operandi is to process graph signals sequentially and thus keep memory and computational costs in check.
The proposed approach also exhibits better tracking performance (in terms of suboptimality) when compared to state-of-the-art online graph learning baselines.
arXiv Detail & Related papers (2024-09-19T17:12:03Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - GSP-KalmanNet: Tracking Graph Signals via Neural-Aided Kalman Filtering [23.19392802641989]
We study the tracking of graph signals using a hybrid model-based/data-driven approach.
We develop the GSP-KalmanNet, which tracks the hidden graphical states from the graphical measurements.
The proposed GSP-KalmanNet achieves enhanced accuracy and run time performance as well as improved robustness to model misspecifications.
arXiv Detail & Related papers (2023-11-28T08:43:10Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting [4.14360329494344]
We propose a novel traffic forecasting framework called Progressive Graph Convolutional Network (PGCN)
PGCN constructs a set of graphs by progressively adapting to online input data during the training and testing phases.
The proposed model achieves state-of-the-art performance with consistency in all datasets.
arXiv Detail & Related papers (2022-02-18T02:15:44Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Efficient Variational Bayesian Structure Learning of Dynamic Graphical
Models [19.591265962713837]
Estimating time-varying graphical models is of paramount importance in various social, financial, biological, and engineering systems.
Existing methods require extensive tuning of parameters that control the graph sparsity and temporal smoothness.
We propose a low-complexity tuning-free Bayesian approach, named BADGE.
arXiv Detail & Related papers (2020-09-16T14:19:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.