論文の概要: XC-Cache: Cross-Attending to Cached Context for Efficient LLM Inference
- arxiv url: http://arxiv.org/abs/2404.15420v2
- Date: Thu, 24 Oct 2024 16:40:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:51:30.852668
- Title: XC-Cache: Cross-Attending to Cached Context for Efficient LLM Inference
- Title(参考訳): XCキャッシュ: 効率的なLLM推論のためのキャッシュコンテキストへのクロスエージェント
- Authors: João Monteiro, Étienne Marcotte, Pierre-André Noël, Valentina Zantedeschi, David Vázquez, Nicolas Chapados, Christopher Pal, Perouz Taslakian,
- Abstract要約: インコンテキスト学習(ICL)アプローチは典型的には、参照情報に基づいて条件デコーダのみの言語モデルを生成するプロンプトを活用する。
この研究は、エンコーダ・デコーダアーキテクチャにインスパイアされたモデルを導入し、プロンプトなしで参照テキストの条件生成にクロスアテンションを使用することにより、これらの制限に対処する。
質問応答(QA)をテストベッドとして使用し、条件生成能力を評価し、ICLより優れており、微調整された誘導LDMと同等であり、標準KVキャッシュと比較して空間フットプリントを2桁の精度で大幅に削減する。
- 参考スコア(独自算出の注目度): 20.249206904309816
- License:
- Abstract: In-context learning (ICL) approaches typically leverage prompting to condition decoder-only language model generation on reference information. Just-in-time processing of a context is inefficient due to the quadratic cost of self-attention operations, and caching is desirable. However, caching transformer states can easily require almost as much space as the model parameters. When the right context isn't known in advance, caching ICL can be challenging. This work addresses these limitations by introducing models that, inspired by the encoder-decoder architecture, use cross-attention to condition generation on reference text without the prompt. More precisely, we leverage pre-trained decoder-only models and only train a small number of added layers. We use Question-Answering (QA) as a testbed to evaluate the ability of our models to perform conditional generation and observe that they outperform ICL, are comparable to fine-tuned prompted LLMs, and drastically reduce the space footprint relative to standard KV caching by two orders of magnitude.
- Abstract(参考訳): In-context Learning (ICL) アプローチは通常、参照情報に基づいて条件デコーダのみの言語モデルを生成するプロンプトを活用する。
コンテキストのジャスト・イン・タイム処理は、自己アテンション操作の二次的なコストのために非効率であり、キャッシュが望ましい。
しかし、キャッシングトランスフォーマー状態はモデルパラメータと同じくらいのスペースを必要とする。
適切なコンテキストが事前に分かっていない場合、ICLのキャッシュは難しい可能性がある。
この研究は、エンコーダ・デコーダアーキテクチャにインスパイアされたモデルを導入し、プロンプトなしで参照テキストの条件生成にクロスアテンションを使用することにより、これらの制限に対処する。
より正確には、トレーニング済みのデコーダのみのモデルを活用し、少数の追加レイヤのみをトレーニングします。
質問応答(QA)をテストベッドとして使用し、条件生成能力を評価し、ICLより優れており、微調整された誘導LDMと同等であり、標準KVキャッシングに対する空間フットプリントを2桁の精度で大幅に削減する。
関連論文リスト
- EPIC: Efficient Position-Independent Context Caching for Serving Large Language Models [19.510078997414606]
EPICは、大きな言語モデルのための位置非依存のコンテキストキャッシュを導入している。
EPICはTTFTの最大8倍のスループットと既存のシステムに対する7倍のスループットを提供する。
論文 参考訳(メタデータ) (2024-10-20T08:42:29Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches [52.02764371205856]
長期の文脈能力は、大規模言語モデル(LLM)にとって重要な能力である
この研究は、現在の手法の分類を提供し、長いコンテキストタスクの7つのカテゴリにまたがる10以上の最先端のアプローチを評価する。
論文 参考訳(メタデータ) (2024-07-01T17:59:47Z) - PQCache: Product Quantization-based KVCache for Long Context LLM Inference [27.523568511043273]
キーバリューキャッシュ(KVCache)は、大規模言語モデル(LLM)において重要なコンポーネントである
現在の手法では、この問題に対処するためにLLMにおける自己注意に適したキーと値を選択的に決定する。
本稿では,KVCacheの管理にPQ(Product Quantization)を採用しているPQCacheを提案する。
論文 参考訳(メタデータ) (2024-07-01T13:05:42Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
カスケードサブキャッシュバッファを利用して,最も関連性の高いトークンを選択的に保持する機構を導入する。
本手法は,1Mトークンのフラッシュアテンションと比較して,プリフィルステージ遅延を6.8倍削減する。
論文 参考訳(メタデータ) (2024-06-24T03:59:17Z) - Efficient LLM Inference with Kcache [3.945956673130761]
大規模言語モデル(LLM)はAIアプリケーションに大きな影響を与えている。
KVキャッシュ技術は業界で最も広く使われている技術の一つである。
本稿では,LLM 推論プロセスにおけるメモリボトルネック問題を軽減するため,新しい KCache 手法を提案する。
論文 参考訳(メタデータ) (2024-04-28T03:11:42Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
本稿では,大規模言語モデルの制約を克服する新しいトレーニングフリースキームである階層型cOntext MERging(HOMER)を提案する。
HomeRは、長いインプットを管理可能なチャンクに分割する、分別/対数アルゴリズムを使用する。
トークン削減技術がマージ毎に先行し、メモリ使用効率が保証される。
論文 参考訳(メタデータ) (2024-04-16T06:34:08Z) - QAQ: Quality Adaptive Quantization for LLM KV Cache [3.163526369095745]
モデルデプロイメントのボトルネックは、コンテキスト長のキーバリューキャッシュの線形拡張によって生じる。
KVキャッシュのための品質適応量子化スキームQAQを提案する。
論文 参考訳(メタデータ) (2024-03-07T16:42:37Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
In-context Autoencoder (ICAE) を提案し、長いコンテキストを短いメモリスロットに圧縮する。
ICAEは、大量のテキストデータに基づく自動符号化と言語モデリングの両方の目的を用いて、まず事前訓練を行う。
論文 参考訳(メタデータ) (2023-07-13T17:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。