Can Large Language Models Learn the Physics of Metamaterials? An Empirical Study with ChatGPT
- URL: http://arxiv.org/abs/2404.15458v1
- Date: Tue, 23 Apr 2024 19:05:42 GMT
- Title: Can Large Language Models Learn the Physics of Metamaterials? An Empirical Study with ChatGPT
- Authors: Darui Lu, Yang Deng, Jordan M. Malof, Willie J. Padilla,
- Abstract summary: Large language models (LLMs) such as ChatGPT, Gemini, LlaMa, and Claude are trained on massive quantities of text parsed from the internet.
We present a LLM fine-tuned on up to 40,000 data that can predict electromagnetic spectra over a range of frequencies given a text prompt.
- Score: 9.177651206337005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) such as ChatGPT, Gemini, LlaMa, and Claude are trained on massive quantities of text parsed from the internet and have shown a remarkable ability to respond to complex prompts in a manner often indistinguishable from humans. We present a LLM fine-tuned on up to 40,000 data that can predict electromagnetic spectra over a range of frequencies given a text prompt that only specifies the metasurface geometry. Results are compared to conventional machine learning approaches including feed-forward neural networks, random forest, linear regression, and K-nearest neighbor (KNN). Remarkably, the fine-tuned LLM (FT-LLM) achieves a lower error across all dataset sizes explored compared to all machine learning approaches including a deep neural network. We also demonstrate the LLM's ability to solve inverse problems by providing the geometry necessary to achieve a desired spectrum. LLMs possess some advantages over humans that may give them benefits for research, including the ability to process enormous amounts of data, find hidden patterns in data, and operate in higher-dimensional spaces. We propose that fine-tuning LLMs on large datasets specific to a field allows them to grasp the nuances of that domain, making them valuable tools for research and analysis.
Related papers
- All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
We propose a novel in-context learning framework, FeatLLM, which employs Large Language Models as feature engineers.
FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
arXiv Detail & Related papers (2024-04-15T06:26:08Z) - Benchmarking Large Language Models for Molecule Prediction Tasks [7.067145619709089]
Large Language Models (LLMs) stand at the forefront of a number of Natural Language Processing (NLP) tasks.
This paper explores a fundamental question: Can LLMs effectively handle molecule prediction tasks?
We identify several classification and regression prediction tasks across six standard molecule datasets.
We compare their performance with existing Machine Learning (ML) models, which include text-based models and those specifically designed for analysing the geometric structure of molecules.
arXiv Detail & Related papers (2024-03-08T05:59:56Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Graph Neural Prompting with Large Language Models [32.97391910476073]
Graph Neural Prompting (GNP) is a novel plug-and-play method to assist pre-trained language models in learning beneficial knowledge from knowledge graphs.
Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks.
arXiv Detail & Related papers (2023-09-27T06:33:29Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities.
We investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors.
arXiv Detail & Related papers (2023-07-07T05:31:31Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Causal Reasoning and Large Language Models: Opening a New Frontier for Causality [29.433401785920065]
Large language models (LLMs) can generate causal arguments with high probability.
LLMs may be used by human domain experts to save effort in setting up a causal analysis.
arXiv Detail & Related papers (2023-04-28T19:00:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.