Minimal Evidence Group Identification for Claim Verification
- URL: http://arxiv.org/abs/2404.15588v1
- Date: Wed, 24 Apr 2024 01:44:09 GMT
- Title: Minimal Evidence Group Identification for Claim Verification
- Authors: Xiangci Li, Sihao Chen, Rajvi Kapadia, Jessica Ouyang, Fan Zhang,
- Abstract summary: We study the problem of identifying minimal evidence groups (MEGs) for claim verification.
We show that MEG identification can be reduced from Set Cover problem, based on entailment inference of whether a given evidence group provides full/partial support to a claim.
Our proposed approach achieves 18.4% and 34.8% absolute improvements on the WiCE and SciFact datasets.
- Score: 15.8357231063287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Claim verification in real-world settings (e.g. against a large collection of candidate evidences retrieved from the web) typically requires identifying and aggregating a complete set of evidence pieces that collectively provide full support to the claim. The problem becomes particularly challenging when there exists distinct sets of evidence that could be used to verify the claim from different perspectives. In this paper, we formally define and study the problem of identifying such minimal evidence groups (MEGs) for claim verification. We show that MEG identification can be reduced from Set Cover problem, based on entailment inference of whether a given evidence group provides full/partial support to a claim. Our proposed approach achieves 18.4% and 34.8% absolute improvements on the WiCE and SciFact datasets over LLM prompting. Finally, we demonstrate the benefits of MEGs in downstream applications such as claim generation.
Related papers
- Contrastive Learning to Improve Retrieval for Real-world Fact Checking [84.57583869042791]
We present Contrastive Fact-Checking Reranker (CFR), an improved retriever for fact-checking complex claims.
We leverage the AVeriTeC dataset, which annotates subquestions for claims with human written answers from evidence documents.
We find a 6% improvement in veracity classification accuracy on the dataset.
arXiv Detail & Related papers (2024-10-07T00:09:50Z) - Multimodal Misinformation Detection using Large Vision-Language Models [7.505532091249881]
Large language models (LLMs) have shown remarkable performance in various tasks.
Few approaches consider evidence retrieval as part of misinformation detection.
We propose a novel re-ranking approach for multimodal evidence retrieval.
arXiv Detail & Related papers (2024-07-19T13:57:11Z) - From Chaos to Clarity: Claim Normalization to Empower Fact-Checking [57.024192702939736]
Claim Normalization (aka ClaimNorm) aims to decompose complex and noisy social media posts into more straightforward and understandable forms.
We propose CACN, a pioneering approach that leverages chain-of-thought and claim check-worthiness estimation.
Our experiments demonstrate that CACN outperforms several baselines across various evaluation measures.
arXiv Detail & Related papers (2023-10-22T16:07:06Z) - Complex Claim Verification with Evidence Retrieved in the Wild [73.19998942259073]
We present the first fully automated pipeline to check real-world claims by retrieving raw evidence from the web.
Our pipeline includes five components: claim decomposition, raw document retrieval, fine-grained evidence retrieval, claim-focused summarization, and veracity judgment.
arXiv Detail & Related papers (2023-05-19T17:49:19Z) - Read it Twice: Towards Faithfully Interpretable Fact Verification by
Revisiting Evidence [59.81749318292707]
We propose a fact verification model named ReRead to retrieve evidence and verify claim.
The proposed system is able to achieve significant improvements upon best-reported models under different settings.
arXiv Detail & Related papers (2023-05-02T03:23:14Z) - WiCE: Real-World Entailment for Claims in Wikipedia [63.234352061821625]
We propose WiCE, a new fine-grained textual entailment dataset built on natural claim and evidence pairs extracted from Wikipedia.
In addition to standard claim-level entailment, WiCE provides entailment judgments over sub-sentence units of the claim.
We show that real claims in our dataset involve challenging verification and retrieval problems that existing models fail to address.
arXiv Detail & Related papers (2023-03-02T17:45:32Z) - Generating Literal and Implied Subquestions to Fact-check Complex Claims [64.81832149826035]
We focus on decomposing a complex claim into a comprehensive set of yes-no subquestions whose answers influence the veracity of the claim.
We present ClaimDecomp, a dataset of decompositions for over 1000 claims.
We show that these subquestions can help identify relevant evidence to fact-check the full claim and derive the veracity through their answers.
arXiv Detail & Related papers (2022-05-14T00:40:57Z) - COVID-Fact: Fact Extraction and Verification of Real-World Claims on
COVID-19 Pandemic [12.078052727772718]
We introduce a FEVER-like dataset COVID-Fact of $4,086$ claims concerning the COVID-19 pandemic.
The dataset contains claims, evidence for the claims, and contradictory claims refuted by the evidence.
arXiv Detail & Related papers (2021-06-07T16:59:46Z) - Topic-Aware Evidence Reasoning and Stance-Aware Aggregation for Fact
Verification [19.130541561303293]
We propose a novel topic-aware evidence reasoning and stance-aware aggregation model for fact verification.
Tests conducted on two benchmark datasets demonstrate the superiority of the proposed model over several state-of-the-art approaches for fact verification.
arXiv Detail & Related papers (2021-06-02T14:33:12Z) - Hierarchical Evidence Set Modeling for Automated Fact Extraction and
Verification [5.836068916903788]
Hierarchical Evidence Set Modeling (HESM) is a framework to extract evidence sets and verify a claim to be supported, refuted or not enough info.
Our experimental results show that HESM outperforms 7 state-of-the-art methods for fact extraction and claim verification.
arXiv Detail & Related papers (2020-10-10T22:27:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.