論文の概要: KS-LLM: Knowledge Selection of Large Language Models with Evidence Document for Question Answering
- arxiv url: http://arxiv.org/abs/2404.15660v1
- Date: Wed, 24 Apr 2024 05:32:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 20:09:25.131951
- Title: KS-LLM: Knowledge Selection of Large Language Models with Evidence Document for Question Answering
- Title(参考訳): KS-LLM:質問応答のためのエビデンス文書を用いた大規模言語モデルの知識選択
- Authors: Xinxin Zheng, Feihu Che, Jinyang Wu, Shuai Zhang, Shuai Nie, Kang Liu, Jianhua Tao,
- Abstract要約: 大きな言語モデル(LLM)は幻覚の問題に悩まされ、知識集約的なタスクに適用した場合、重大な課題に直面します。
本稿では,証拠文書から貴重な情報を特定することを目的とした,大規模言語モデル(KS-LLM)の新たな知識選択手法を提案する。
まず、入力された質問に基づいて三つ組を生成し、次に証拠文書から三つ組に最もよく似たエビデンス文を選択し、最後に、エビデンス文と三つ組を組み合わせ、大きな言語モデルで回答を生成する。
- 参考スコア(独自算出の注目度): 35.87885118640294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) suffer from the hallucination problem and face significant challenges when applied to knowledge-intensive tasks. A promising approach is to leverage evidence documents as extra supporting knowledge, which can be obtained through retrieval or generation. However, existing methods directly leverage the entire contents of the evidence document, which may introduce noise information and impair the performance of large language models. To tackle this problem, we propose a novel Knowledge Selection of Large Language Models (KS-LLM) method, aiming to identify valuable information from evidence documents. The KS-LLM approach utilizes triples to effectively select knowledge snippets from evidence documents that are beneficial to answering questions. Specifically, we first generate triples based on the input question, then select the evidence sentences most similar to triples from the evidence document, and finally combine the evidence sentences and triples to assist large language models in generating answers. Experimental comparisons on several question answering datasets, such as TriviaQA, WebQ, and NQ, demonstrate that the proposed method surpasses the baselines and achieves the best results.
- Abstract(参考訳): 大きな言語モデル(LLM)は幻覚の問題に悩まされ、知識集約的なタスクに適用した場合、重大な課題に直面します。
有望なアプローチは、証拠文書を検索や生成を通じて得られる追加の支援知識として活用することである。
しかし,既存の手法では証拠文書の全内容を直接活用し,ノイズ情報を導入し,大規模言語モデルの性能を損なう可能性がある。
この問題に対処するため,我々は,証拠文書から貴重な情報を特定することを目的とした,KS-LLM(Knowledge Selection of Large Language Models)手法を提案する。
KS-LLMアプローチは三つ組を利用して、質問に答えるのに有用な証拠文書から知識スニペットを効果的に選択する。
具体的には、まず、入力された質問に基づいて三重項を生成し、次に、証拠文書から三重項に最もよく似た証拠文を選択し、最後に、証拠文と三重項を組み合わせて、大きな言語モデルによる回答の生成を支援する。
TriviaQA, WebQ, NQ などの質問応答データセットの実験的比較により,提案手法がベースラインを超え,最良の結果が得られることを示した。
関連論文リスト
- Read and Think: An Efficient Step-wise Multimodal Language Model for Document Understanding and Reasoning [0.0]
既存の文書理解モデルは、1つの単語やフレーズで直接答えを生成する傾向がある。
文書画像の段階的問合せ対を生成するためにMLLM(Multi-modal Large Language Models)を用いる。
次に、生成された高品質なデータを使用して、DocAssistantと呼ばれる、人間化された文書理解と推論モデルをトレーニングします。
論文 参考訳(メタデータ) (2024-02-26T01:17:50Z) - Retrieval-Generation Synergy Augmented Large Language Models [30.53260173572783]
本稿では,反復的な検索・生成協調フレームワークを提案する。
シングルホップQAとマルチホップQAタスクを含む4つの質問応答データセットの実験を行った。
論文 参考訳(メタデータ) (2023-10-08T12:50:57Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
証拠は、自動化された事実チェックにおいて重要な役割を果たす。
既存のファクトチェックシステムは、エビデンス文が与えられたと仮定するか、検索エンジンが返した検索スニペットを使用する。
資料から得られた全文を証拠として組み込んで,2つの豊富なデータセットを導入することを提案する。
論文 参考訳(メタデータ) (2023-05-25T15:01:19Z) - Coarse-to-Fine Knowledge Selection for Document Grounded Dialogs [11.63334863772068]
マルチドキュメント基盤対話システム(DGDS)は,文書の集合から支援された知識を見出すことで,ユーザの要求に答える。
本稿では,粒度の粗い知識検索と粒度の細かい知識抽出の両方を統一されたフレームワークで最適化することを目的としたRe3Gを提案する。
論文 参考訳(メタデータ) (2023-02-23T08:28:29Z) - Recitation-Augmented Language Models [85.30591349383849]
知識集約型NLPタスクにおいて,RECITEは強力なパラダイムであることを示す。
具体的には、リサイクリングを中間ステップとして活用することにより、新しい最先端性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-10-04T00:49:20Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
本稿では,文書検索を大規模言語モデル生成器に置き換えることで,知識集約型タスクを解く新しい視点を提案する。
我々は,提案手法をgenRead (genRead) と呼び,まず大きな言語モデルに対して,与えられた質問に基づいて文脈文書を生成し,次に生成された文書を読み出して最終回答を生成する。
論文 参考訳(メタデータ) (2022-09-21T01:30:59Z) - Layout-Aware Information Extraction for Document-Grounded Dialogue:
Dataset, Method and Demonstration [75.47708732473586]
視覚的にリッチな文書から構造的知識と意味的知識の両方を抽出するためのレイアウト対応文書レベル情報抽出データセット(LIE)を提案する。
LIEには製品および公式文書の4,061ページから3つの抽出タスクの62kアノテーションが含まれている。
実験の結果、レイアウトはVRDベースの抽出に不可欠であることが示され、システムデモでは、抽出された知識が、ユーザが関心を持っている答えを見つけるのに役立つことも確認されている。
論文 参考訳(メタデータ) (2022-07-14T07:59:45Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
本稿では,ジェネレーション方式で証拠を検索する最初のシステムであるGEREを提案する。
FEVERデータセットの実験結果は、GEREが最先端のベースラインよりも大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2022-04-12T03:49:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。