ST-MambaSync: The Complement of Mamba and Transformers for Spatial-Temporal in Traffic Flow Prediction
- URL: http://arxiv.org/abs/2404.15899v3
- Date: Thu, 9 May 2024 06:48:37 GMT
- Title: ST-MambaSync: The Complement of Mamba and Transformers for Spatial-Temporal in Traffic Flow Prediction
- Authors: Zhiqi Shao, Xusheng Yao, Ze Wang, Junbin Gao,
- Abstract summary: This paper introduces ST-MambaSync, an innovative traffic flow prediction model that combines transformer technology with the ST-Mamba block.
We are the pioneers in employing the Mamba mechanism which is an attention mechanism integrated with ResNet within a transformer framework.
- Score: 36.89741338367832
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate traffic flow prediction is crucial for optimizing traffic management, enhancing road safety, and reducing environmental impacts. Existing models face challenges with long sequence data, requiring substantial memory and computational resources, and often suffer from slow inference times due to the lack of a unified summary state. This paper introduces ST-MambaSync, an innovative traffic flow prediction model that combines transformer technology with the ST-Mamba block, representing a significant advancement in the field. We are the pioneers in employing the Mamba mechanism which is an attention mechanism integrated with ResNet within a transformer framework, which significantly enhances the model's explainability and performance. ST-MambaSync effectively addresses key challenges such as data length and computational efficiency, setting new benchmarks for accuracy and processing speed through comprehensive comparative analysis. This development has significant implications for urban planning and real-time traffic management, establishing a new standard in traffic flow prediction technology.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - STGformer: Efficient Spatiotemporal Graph Transformer for Traffic Forecasting [11.208740750755025]
Traffic is a cornerstone of smart city management enabling efficient allocation and transportation planning.
Deep learning, with its ability to capture complex nonlinear patterns in data, has emerged as a powerful tool for traffic forecasting.
graph neural networks (GCNs) and transformer-based models have shown promise, but their computational demands often hinder their application to realworld networks.
We propose a noveltemporal graph transformer (STG) architecture, enabling efficient modeling of both global and local traffic patterns while maintaining a manageable computational footprint.
arXiv Detail & Related papers (2024-10-01T04:15:48Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - ST-Mamba: Spatial-Temporal Mamba for Traffic Flow Estimation Recovery using Limited Data [11.003036186451762]
Traffic flow estimation (TFE) is crucial for urban intelligent traffic systems.
We introduce the spatial-temporal Mamba (ST-Mamba), a deep learning model combining a convolutional neural network (CNN) with a Mamba framework.
Our model aims to achieve results comparable to those from extensive data sets while only utilizing minimal data.
arXiv Detail & Related papers (2024-07-11T14:43:03Z) - ST-Mamba: Spatial-Temporal Selective State Space Model for Traffic Flow Prediction [32.44888387725925]
The proposed ST-Mamba model is first to leverage the power of spatial-temporal learning in traffic flow prediction without using graph modeling.
The proposed ST-Mamba model achieves a 61.11% improvement in computational speed and increases prediction accuracy by 0.67%.
Experiments with real-world traffic datasets demonstrate that the textsfST-Mamba model sets a new benchmark in traffic flow prediction.
arXiv Detail & Related papers (2024-04-20T03:57:57Z) - CCDSReFormer: Traffic Flow Prediction with a Criss-Crossed Dual-Stream Enhanced Rectified Transformer Model [32.45713037210818]
We introduce Criss-Crossed Dual-Stream Enhanced Rectified Transformer model (CCDSReFormer)
It includes three innovative modules: Enhanced Rectified Spatial Self-attention (ReSSA), Enhanced Rectified Delay Aware Self-attention (ReDASA) and Enhanced Rectified Temporal Self-attention (ReTSA)
These modules aim to lower computational needs via sparse attention, focus on local information for better traffic dynamics understanding, and merge spatial and temporal insights through a unique learning method.
arXiv Detail & Related papers (2024-03-26T14:43:57Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - STAEformer: Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer
SOTA for Traffic Forecasting [10.875804648633832]
We present a component called adaptive embedding that can yield results with outstanding gains.
Experiments demonstrate that adaptive embedding plays a crucial role in traffic forecasting by capturing intrinsic-temporal relations and information traffic time series.
arXiv Detail & Related papers (2023-08-21T02:27:13Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.