Squeezed Displaced Schrödinger-cat state as a signature of the PT-symmetry phase transition
- URL: http://arxiv.org/abs/2404.15942v1
- Date: Wed, 24 Apr 2024 16:02:49 GMT
- Title: Squeezed Displaced Schrödinger-cat state as a signature of the PT-symmetry phase transition
- Authors: Yuetao Chen, Shoukang Chang, Shaoyan Gao,
- Abstract summary: We investigate a cavity coupled to a non-Hermitian Su-Schrieffer-Heeger chain within mean-field ansatzs.
We find that Squeezed Displaced Schrodinger cat (SDSc) will emerge with high fidelity in cavity ground state when PT -symmetry is broken.
This reveals that PT-symmetry breaking in electronic materials can also be captured by the quantum Fisher information and nonclassicality in phase estimation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parity-time (PT ) symmetric systems are gain-loss systems whose dynamics are governed by non-Hermitian Hamiltonians with degeneracies at exceptional-points (EPs) and has been studied in various photonic, electrical, mechanical systems, and so on. However, it is still an open question how to capture PT symmetry phase transition in electronic system where the transport properties of electron will be dramatically effected. Fortunately, the hybridization between photon and electron offers a novel way not only to control but also probe material properties. Here, we investigate a cavity coupled to a non-Hermitian Su-Schrieffer-Heeger (SSH) chain within mean-field ansatzs. We find that Squeezed Displaced Schrodinger cat (SDSc) will emerge with high fidelity in cavity ground state when PT -symmetry is broken and the fidelity will experience a sharp drop from almost 1 to 0 as PT symmetry recovers. Additionally, in semiclassical limit, we find that there exists local extrema at two sides of $x=0$ in semiclassical photon Hamiltonian $H_{\rm eff}(x, p)$, a clear signature of the emergence of SDSc state in cavity ground state. Thus, the appearance of SDSc state can be used to capture PT-symmetry phase transition which can not be modified by cavity mode. Besides, we exploit the cavity ground state to estimate the phase in the optical interferometer, and show that the quantum Fisher information and nonclassicality will sharply decline at EPs. This reveals that PT-symmetry breaking in electronic materials can also be captured by the quantum Fisher information and nonclassicality in phase estimation.
Related papers
- Cavity Control of Topological Qubits: Fusion Rule, Anyon Braiding and Majorana-Schrödinger Cat States [39.58317527488534]
We investigate the impact of introducing a local cavity within the center of a topological chain.
This cavity induces a scissor-like effect that bisects the chain, liberating Majorana zero modes (MZMs) within the bulk.
By leveraging the symmetry properties of fermion modes within a two-site cavity, we propose a novel method for generating MZM-polariton Schr"odinger cat states.
arXiv Detail & Related papers (2024-09-06T18:00:00Z) - Experimental demonstration of spontaneous symmetry breaking with emergent multi-qubit entanglement [10.791982177923412]
Spontaneous symmetry breaking ( SSB) is crucial to the occurrence of phase transitions.
We present an experimental demonstration of the SSB process in the Lipkin-Meshkov-Glick model.
The observed nonclassical correlations among these qubits in the symmetry-breaking region go beyond the conventional description of SSB.
arXiv Detail & Related papers (2024-07-17T13:50:29Z) - $\mathcal{PT}$ Symmetric Non-Hermitian Cavity Magnomechanics [0.0]
We design and explore PT-symmetric behavior of a hybrid non-Hermitian cavity magnomechanics consisting of a ferromagnetic YIG sphere driven by external magnetic field.
The external magnetic field excites collective mechanical modes of magnons, which later excites cavity mode leading to a coupling between cavity magnons and photons.
arXiv Detail & Related papers (2024-06-23T13:00:02Z) - Quantum Phase Transitions in Optomechanical Systems [2.451326684641447]
We investigate the ground state properties of an optomechanical system consisting of a coupled cavity and mechanical modes.
By coupling atoms to the cavity mode, the hybrid system can undergo a quantum phase transition (QPT) at a hybrid critical point.
These results suggest that this optomechanical system complements other phase transition models for exploring novel critical phenomena.
arXiv Detail & Related papers (2023-08-29T13:09:48Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Continuous Dissipative Phase Transitions without Symmetry Breaking [0.0]
Dissipative phase transitions (DPTs) of second order are often connected with spontaneous symmetry breaking ( SSB)
We prove this statement to be wrong, showing that SSB is not a necessary condition for the occurrence of second-order DPTs in out-of-equilibrium open quantum systems.
This new type of phase transition cannot be interpreted as a "semiclassical" bifurcation, because, after the DPT, the system steady state remains unique.
arXiv Detail & Related papers (2021-10-22T16:39:59Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Emergence of PT-symmetry breaking in open quantum systems [0.0]
We generalize the definition of PT symmetry to finite-dimensional open quantum systems.
We identify and accurately describe PT-symmetry breaking effects in a large variety of physical systems.
arXiv Detail & Related papers (2020-03-04T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.