論文の概要: Explainable AI models for predicting liquefaction-induced lateral spreading
- arxiv url: http://arxiv.org/abs/2404.15959v1
- Date: Wed, 24 Apr 2024 16:25:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 18:41:38.072709
- Title: Explainable AI models for predicting liquefaction-induced lateral spreading
- Title(参考訳): 液状化誘起横方向拡散予測のための説明可能なAIモデル
- Authors: Cheng-Hsi Hsiao, Krishna Kumar, Ellen Rathje,
- Abstract要約: 機械学習は横方向の拡散予測モデルを改善することができる。
機械学習モデルの“ブラックボックス”の性質は、重要な意思決定における採用を妨げる可能性がある。
この研究は、信頼性と情報的意思決定のための説明可能な機械学習の価値を強調している。
- 参考スコア(独自算出の注目度): 1.6221957454728797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Earthquake-induced liquefaction can cause substantial lateral spreading, posing threats to infrastructure. Machine learning (ML) can improve lateral spreading prediction models by capturing complex soil characteristics and site conditions. However, the "black box" nature of ML models can hinder their adoption in critical decision-making. This study addresses this limitation by using SHapley Additive exPlanations (SHAP) to interpret an eXtreme Gradient Boosting (XGB) model for lateral spreading prediction, trained on data from the 2011 Christchurch Earthquake. SHAP analysis reveals the factors driving the model's predictions, enhancing transparency and allowing for comparison with established engineering knowledge. The results demonstrate that the XGB model successfully identifies the importance of soil characteristics derived from Cone Penetration Test (CPT) data in predicting lateral spreading, validating its alignment with domain understanding. This work highlights the value of explainable machine learning for reliable and informed decision-making in geotechnical engineering and hazard assessment.
- Abstract(参考訳): 地震によって引き起こされる液状化は、インフラへの脅威として、相当に横方向の拡散を引き起こす可能性がある。
マシンラーニング(ML)は、複雑な土壌特性と現場条件をキャプチャすることで、横方向の拡散予測モデルを改善することができる。
しかし、MLモデルの"ブラックボックス"の性質は、重要な意思決定における採用を妨げる可能性がある。
本研究は,2011年クライストチャーチ地震のデータに基づいて訓練された横方向拡散予測のためのeXtreme Gradient Boosting(XGB)モデルの解釈にSHAP(SHapley Additive ExPlanations)を用いることにより,この制限に対処する。
SHAP分析は、モデルの予測を駆動し、透明性を高め、確立されたエンジニアリング知識との比較を可能にする要因を明らかにする。
その結果, コーン浸透試験(CPT)データから得られた土壌特性の重要性をXGBモデルで同定し, 領域理解との整合性を検証した。
この研究は、地球工学とハザードアセスメントにおける信頼性とインフォームドな意思決定のための説明可能な機械学習の価値を強調している。
関連論文リスト
- Robustness of Explainable Artificial Intelligence in Industrial Process Modelling [43.388607981317016]
我々は,地中真実シミュレーションと感度解析に基づいて,現在のXAI手法を評価する。
モデル化された産業プロセスの真の感度を正確に予測する能力において,XAI法とXAI法の違いを示す。
論文 参考訳(メタデータ) (2024-07-12T09:46:26Z) - Selection of contributing factors for predicting landslide
susceptibility using machine learning and deep learning models [5.097453589594454]
地すべりは一般的な自然災害であり、死傷者、財産の安全上の脅威、経済的な損失を引き起こす可能性がある。
潜在的危険地における地すべり発生の可能性を理解または予測することが重要である。
本研究では,地すべり感受性予測の精度に及ぼす寄与要因の選択の影響について検討した。
論文 参考訳(メタデータ) (2023-09-12T09:00:17Z) - AUTOLYCUS: Exploiting Explainable AI (XAI) for Model Extraction Attacks against Interpretable Models [1.8752655643513647]
XAIツールは、モデル抽出攻撃の脆弱性を増大させる可能性がある。
そこで本研究では,ブラックボックス設定下での解釈可能なモデルに対して,新たなリトレーニング(学習)に基づくモデル抽出攻撃フレームワークを提案する。
AUTOLYCUSは非常に効果的で、最先端の攻撃に比べてクエリが大幅に少ないことが示される。
論文 参考訳(メタデータ) (2023-02-04T13:23:39Z) - Estimate Deformation Capacity of Non-Ductile RC Shear Walls using
Explainable Boosting Machine [0.0]
本研究の目的は,非延性鉄筋コンクリートせん断壁の変形能力を予測するための,完全に説明可能な機械学習モデルを開発することである。
提案された Explainable Boosting Machines (EBM) ベースのモデルは、解釈可能で堅牢で、自然に説明可能なガラス箱モデルであるが、ブラックボックスモデルに匹敵する高い精度を提供する。
論文 参考訳(メタデータ) (2023-01-11T09:20:29Z) - Explainable Machine Learning for Hydrocarbon Prospect Risking [14.221460375400692]
我々は、LIMEがドメイン知識に整合した意思決定プロセスを明らかにすることによって、モデルの決定に対する信頼をいかに引き起こすかを示す。
データやトレーニングデータセットの異常なパターンによる誤予測をデバッグする可能性がある。
論文 参考訳(メタデータ) (2022-12-15T00:38:14Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
大量のトレーニングデータが、最先端のNLPモデルの高性能化の大きな理由の1つである。
トレーニングデータがどのように予測に影響を及ぼすかを記述するための言語を,因果的フレームワークを通じて提供する。
我々のフレームワークは、高価なモデルの再訓練の必要性を回避し、観測データのみに基づいて因果効果を推定することができる。
論文 参考訳(メタデータ) (2022-07-28T17:36:24Z) - Taming Overconfident Prediction on Unlabeled Data from Hindsight [50.9088560433925]
ラベルのないデータに対する予測の不確実性を最小化することは、半教師付き学習において優れた性能を達成するための鍵となる要素である。
本稿では,アダプティブシャーニング(Adaptive Sharpening, ADS)と呼ばれる2つのメカニズムを提案する。
ADSは、プラグインにすることで最先端のSSLメソッドを大幅に改善する。
論文 参考訳(メタデータ) (2021-12-15T15:17:02Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
本研究は,空間予測誤差プロファイル (SPEP) と空間変数重要度プロファイル (SVIP) を,新しいモデルに依存しない評価・解釈ツールとして提案する。
統計学的手法、線形モデル、ランダムフォレスト、ハイブリッドアルゴリズムのSPEPとSVIPは、顕著な差異と関連する類似性を示している。
この新しい診断ツールは空間データ科学のツールキットを充実させ、MLモデルの解釈、選択、設計を改善する可能性がある。
論文 参考訳(メタデータ) (2021-11-13T01:50:36Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
因果グラフ(CG)は、データ分散の背後にあるデータ生成プロセスの知識のコンパクトな表現である。
本研究では,条件付き独立性(CI)関係の事前知識を活用可能なモデルに依存しないデータ拡張手法を提案する。
本手法は,小データシステムにおける予測精度の向上に有効であることを実験的に示した。
論文 参考訳(メタデータ) (2021-02-27T06:13:59Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z) - Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences [77.68028443709338]
本稿では, Epidemic Type Aftershock Sequence (ETAS) モデルのベイズ的完全定式化を提案する。
地理的領域における主震の発生は不均一な空間的点過程に従うと仮定される。
論文 参考訳(メタデータ) (2020-02-05T10:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。