論文の概要: Explainable Machine Learning for Hydrocarbon Prospect Risking
- arxiv url: http://arxiv.org/abs/2212.07563v1
- Date: Thu, 15 Dec 2022 00:38:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 17:28:31.161875
- Title: Explainable Machine Learning for Hydrocarbon Prospect Risking
- Title(参考訳): 炭化水素のリスク評価のための説明可能な機械学習
- Authors: Ahmad Mustafa, and Ghassan AlRegib
- Abstract要約: 我々は、LIMEがドメイン知識に整合した意思決定プロセスを明らかにすることによって、モデルの決定に対する信頼をいかに引き起こすかを示す。
データやトレーニングデータセットの異常なパターンによる誤予測をデバッグする可能性がある。
- 参考スコア(独自算出の注目度): 14.221460375400692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hydrocarbon prospect risking is a critical application in geophysics
predicting well outcomes from a variety of data including geological,
geophysical, and other information modalities. Traditional routines require
interpreters to go through a long process to arrive at the probability of
success of specific outcomes. AI has the capability to automate the process but
its adoption has been limited thus far owing to a lack of transparency in the
way complicated, black box models generate decisions. We demonstrate how LIME
-- a model-agnostic explanation technique -- can be used to inject trust in
model decisions by uncovering the model's reasoning process for individual
predictions. It generates these explanations by fitting interpretable models in
the local neighborhood of specific datapoints being queried. On a dataset of
well outcomes and corresponding geophysical attribute data, we show how LIME
can induce trust in model's decisions by revealing the decision-making process
to be aligned to domain knowledge. Further, it has the potential to debug
mispredictions made due to anomalous patterns in the data or faulty training
datasets.
- Abstract(参考訳): 炭化水素の予測リスクは、地質学、地球物理学、その他の情報モダリティを含む様々なデータから良い結果を予測する地球物理学において重要な応用である。
伝統的なルーチンは、インタープリタが特定の結果が成功する確率に到達するために長いプロセスを経る必要があります。
aiにはプロセスを自動化する能力があるが、複雑なブラックボックスモデルによる意思決定方法の透明性の欠如により、これまで採用は制限されていた。
モデルに依存しない説明手法であるLIMEが、個々の予測に対するモデルの推論プロセスを明らかにすることによって、モデル決定に対する信頼を注入する方法を実証する。
クエリされる特定のデータポイントの局所的な近傍に解釈可能なモデルを適用することで、これらの説明を生成する。
良好な結果のデータセットとそれに対応する物理特性データを用いて、LIMEがドメイン知識に整合した意思決定プロセスを明らかにすることにより、モデル決定に対する信頼をいかに引き起こすかを示す。
さらにデータやトレーニングデータセットの異常なパターンによる誤予測をデバッグする機能も備えている。
関連論文リスト
- Overlap Number of Balls Model-Agnostic CounterFactuals (ONB-MACF): A Data-Morphology-based Counterfactual Generation Method for Trustworthy Artificial Intelligence [15.415120542032547]
XAIはAIシステムをより理解しやすく信頼性の高いものにしようとしている。
本研究は,データ形態学戦略の価値を解析し,反実的説明を生成する。
ボールのオーバーラップ数(Overlap Number of Balls Model-Agnostic CounterFactuals,ONB-MACF)法を導入している。
論文 参考訳(メタデータ) (2024-05-20T18:51:42Z) - Explainable AI models for predicting liquefaction-induced lateral spreading [1.6221957454728797]
機械学習は横方向の拡散予測モデルを改善することができる。
機械学習モデルの“ブラックボックス”の性質は、重要な意思決定における採用を妨げる可能性がある。
この研究は、信頼性と情報的意思決定のための説明可能な機械学習の価値を強調している。
論文 参考訳(メタデータ) (2024-04-24T16:25:52Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
本稿では,機械学習モデルに対する確率論的原因・効果説明を提供するLaPLACE-Explainerを紹介する。
LaPLACE-Explainerコンポーネントはマルコフ毛布の概念を利用して、関連する特徴と非関連する特徴の間の統計的境界を確立する。
提案手法は,LIME と SHAP の局所的精度と特徴の整合性の観点から,因果的説明と性能を向上する。
論文 参考訳(メタデータ) (2023-10-01T04:09:59Z) - Topological Interpretability for Deep-Learning [0.30806551485143496]
ディープラーニング(DL)モデルは、予測の確実性を定量化できない。
本研究は,臨床および非臨床のテキストに基づいて訓練された2つのDL分類モデルにおいて,特徴を推測する手法を提案する。
論文 参考訳(メタデータ) (2023-05-15T13:38:13Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - Explainable AI Enabled Inspection of Business Process Prediction Models [2.5229940062544496]
本稿では,モデル説明を用いて,機械学習の予測によって適用された推論を解析する手法を提案する。
本手法の新たな貢献は,解釈可能な機械学習機構によって生成された説明と,過去のプロセス実行を記録するイベントログから抽出された文脈的,あるいはドメイン的知識の両方を活用するモデル検査の提案である。
論文 参考訳(メタデータ) (2021-07-16T06:51:18Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
因果グラフ(CG)は、データ分散の背後にあるデータ生成プロセスの知識のコンパクトな表現である。
本研究では,条件付き独立性(CI)関係の事前知識を活用可能なモデルに依存しないデータ拡張手法を提案する。
本手法は,小データシステムにおける予測精度の向上に有効であることを実験的に示した。
論文 参考訳(メタデータ) (2021-02-27T06:13:59Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。