論文の概要: RetinaRegNet: A Zero-Shot Approach for Retinal Image Registration
- arxiv url: http://arxiv.org/abs/2404.16017v3
- Date: Wed, 11 Sep 2024 00:25:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 21:17:34.452528
- Title: RetinaRegNet: A Zero-Shot Approach for Retinal Image Registration
- Title(参考訳): RetinaRegNet: 網膜画像登録のためのゼロショットアプローチ
- Authors: Vishal Balaji Sivaraman, Muhammad Imran, Qingyue Wei, Preethika Muralidharan, Michelle R. Tamplin, Isabella M . Grumbach, Randy H. Kardon, Jui-Kai Wang, Yuyin Zhou, Wei Shao,
- Abstract要約: RetinaRegNetは、最小のオーバーラップ、大きな変形、さまざまな画質で網膜画像を登録するために設計されたゼロショット登録モデルである。
大規模な変形を処理するための2段階の登録フレームワークを実装した。
私たちのモデルは、すべてのデータセットで常に最先端のメソッドより優れています。
- 参考スコア(独自算出の注目度): 10.430563602981705
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce RetinaRegNet, a zero-shot image registration model designed to register retinal images with minimal overlap, large deformations, and varying image quality. RetinaRegNet addresses these challenges and achieves robust and accurate registration through the following steps. First, we extract features from the moving and fixed images using latent diffusion models. We then sample feature points from the fixed image using a combination of the SIFT algorithm and random point sampling. For each sampled point, we identify its corresponding point in the moving image using a 2D correlation map, which computes the cosine similarity between the diffusion feature vectors of the point in the fixed image and all pixels in the moving image. Second, we eliminate most incorrectly detected point correspondences (outliers) by enforcing an inverse consistency constraint, ensuring that correspondences are consistent in both forward and backward directions. We further remove outliers with large distances between corresponding points using a global transformation based outlier detector. Finally, we implement a two-stage registration framework to handle large deformations. The first stage estimates a homography transformation to achieve global alignment between the images, while the second stage uses a third-order polynomial transformation to estimate local deformations. We evaluated RetinaRegNet on three retinal image registration datasets: color fundus images, fluorescein angiography images, and laser speckle flowgraphy images. Our model consistently outperformed state-of-the-art methods across all datasets. The accurate registration achieved by RetinaRegNet enables the tracking of eye disease progression, enhances surgical planning, and facilitates the evaluation of treatment efficacy. Our code is publicly available at: https://github.com/mirthAI/RetinaRegNet.
- Abstract(参考訳): RetinaRegNetは、最小オーバーラップ、大きな変形、様々な画質で網膜画像を登録するゼロショット画像登録モデルである。
RetinaRegNetはこれらの課題に対処し、以下のステップで堅牢で正確な登録を実現する。
まず、潜時拡散モデルを用いて、移動画像と固定画像の特徴を抽出する。
次に、SIFTアルゴリズムとランダム点サンプリングの組み合わせを用いて、固定画像から特徴点をサンプリングする。
各サンプル点について、2次元相関写像を用いて移動画像中の対応する点を同定し、固定画像中の点の拡散特徴ベクトルと移動画像中の全ての画素とのコサイン類似性を計算した。
第2に,逆整合制約を強制することにより,不正確な検出点対応(外接点対応)を排除し,前方方向と後方方向の両方で整合性を確保する。
さらに,大域変換に基づく外乱検出器を用いて,対応する点間の距離が大きい外乱検出器を除去する。
最後に,大規模な変形を扱うための2段階の登録フレームワークを実装した。
第1段階は画像間の大域的なアライメントを達成するためにホモグラフィ変換を推定し、第2段階は局所的な変形を推定するために3階多項式変換を使用する。
網膜画像登録データセット(カラーファンドス画像,フルオレセイン血管造影画像,レーザースペックルフローグラフィ画像)を用いてRetinaRegNetを評価した。
私たちのモデルは、すべてのデータセットで常に最先端のメソッドより優れています。
RetinaRegNetによる正確な登録は、眼疾患の進行の追跡を可能にし、手術計画を強化し、治療効果の評価を容易にする。
私たちのコードは、https://github.com/mirthAI/RetinaRegNet.comで公開されています。
関連論文リスト
- Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
我々はHybridRetinaと呼ばれるハイブリッド登録フレームワークを提案する。
キーポイント検出器とGAMorphと呼ばれる変形ネットワークを用いて、大域的な変換と局所的な変形可能な変換を推定する。
FIREとFLoRI21という2つの広く使われているデータセットの実験により、提案したHybridRetinaは最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-09-02T08:43:50Z) - 2D3D-MATR: 2D-3D Matching Transformer for Detection-free Registration
between Images and Point Clouds [38.425876064671435]
本稿では2D3D-MATRを提案する。
提案手法では,入力画像のダウンサンプリングされたパッチと点雲との間の粗い対応をまず計算する。
パッチマッチングにおけるスケールのあいまいさを解決するため,各画像パッチに対してマルチスケールピラミッドを構築し,最適なマッチング画像パッチを適切な解像度で検出する。
論文 参考訳(メタデータ) (2023-08-10T16:10:54Z) - Estimating Extreme 3D Image Rotation with Transformer Cross-Attention [13.82735766201496]
画像ペアのアクティベーションマップ間の相互アテンションを計算するために,CNN特徴マップとTransformer-Encoderを利用するクロスアテンションベースのアプローチを提案する。
一般的に使用されている画像回転データセットやベンチマークに適用した場合、現代の最先端のスキームよりも優れた性能を示すことが実験的に示されている。
論文 参考訳(メタデータ) (2023-03-05T09:07:26Z) - Differentiable Uncalibrated Imaging [25.67247660827913]
本稿では,センサ位置や投影角などの測定座標の不確実性に対処する,識別可能なイメージングフレームワークを提案する。
入力座標に対して自然に微分可能な暗黙のニューラルネットワーク、別名ニューラルフィールドを適用する。
測定表現を協調的に適合させ、不確実な測定座標を最適化し、一貫したキャリブレーションを保証する画像再構成を行うため、微分性は鍵となる。
論文 参考訳(メタデータ) (2022-11-18T22:48:09Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Unsupervised Domain Adaptation with Contrastive Learning for OCT
Segmentation [49.59567529191423]
本稿では,新しい未ラベル領域からのボリューム画像のセグメンテーションのための,新しい半教師付き学習フレームワークを提案する。
教師付き学習とコントラスト学習を併用し、3次元の近傍スライス間の類似性を利用したコントラストペア方式を導入する。
論文 参考訳(メタデータ) (2022-03-07T19:02:26Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - DeepI2P: Image-to-Point Cloud Registration via Deep Classification [71.3121124994105]
DeepI2Pは、イメージとポイントクラウドの間のクロスモダリティ登録のための新しいアプローチです。
本手法は,カメラとライダーの座標フレーム間の相対的剛性変換を推定する。
登録問題を分類および逆カメラ投影最適化問題に変換することで難易度を回避する。
論文 参考訳(メタデータ) (2021-04-08T04:27:32Z) - FlowReg: Fast Deformable Unsupervised Medical Image Registration using
Optical Flow [0.09167082845109438]
FlowRegは、ニューロイメージングアプリケーションのための教師なしイメージ登録のためのフレームワークである。
flowregは解剖学と病理の形状と構造を維持しながら、強度と空間的類似性を得ることができる。
論文 参考訳(メタデータ) (2021-01-24T03:51:34Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
本稿では,高次関係とトポロジ情報を識別的特徴とロバストなアライメントのために学習し,新しい枠組みを提案する。
我々のフレームワークはOccluded-Dukeデータセットで最先端の6.5%mAPスコアを大幅に上回っている。
論文 参考訳(メタデータ) (2020-03-18T12:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。