論文の概要: Enhancing Diagnosis through AI-driven Analysis of Reflectance Confocal Microscopy
- arxiv url: http://arxiv.org/abs/2404.16080v1
- Date: Wed, 24 Apr 2024 13:23:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 18:12:20.962450
- Title: Enhancing Diagnosis through AI-driven Analysis of Reflectance Confocal Microscopy
- Title(参考訳): 反射共焦点顕微鏡のAI駆動解析による診断の強化
- Authors: Hong-Jun Yoon, Chris Keum, Alexander Witkowski, Joanna Ludzik, Tracy Petrie, Heidi A. Hanson, Sancy A. Leachman,
- Abstract要約: 反射共焦点顕微鏡(英: Reflectance Confocal Microscopy、RCM)は、生体医学研究や臨床皮膚学で用いられる非侵襲的イメージング技術である。
RCMはレーザー光源を用いて組織を照明し、反射した光を捉え、様々な深さの顕微鏡構造の詳細画像を生成する。
近年の研究では、RCM画像の解析のためのAIと機械学習、特にCNNについて研究されている。
- 参考スコア(独自算出の注目度): 36.639983997402275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reflectance Confocal Microscopy (RCM) is a non-invasive imaging technique used in biomedical research and clinical dermatology. It provides virtual high-resolution images of the skin and superficial tissues, reducing the need for physical biopsies. RCM employs a laser light source to illuminate the tissue, capturing the reflected light to generate detailed images of microscopic structures at various depths. Recent studies explored AI and machine learning, particularly CNNs, for analyzing RCM images. Our study proposes a segmentation strategy based on textural features to identify clinically significant regions, empowering dermatologists in effective image interpretation and boosting diagnostic confidence. This approach promises to advance dermatological diagnosis and treatment.
- Abstract(参考訳): 反射共焦点顕微鏡(英: Reflectance Confocal Microscopy、RCM)は、生体医学研究や臨床皮膚学で用いられる非侵襲的イメージング技術である。
皮膚と表皮組織の高解像度画像を仮想的に提供し、物理的生検の必要性を減らす。
RCMはレーザー光源を用いて組織を照明し、反射した光を捉え、様々な深さの顕微鏡構造の詳細画像を生成する。
近年の研究では、RCM画像の解析のためのAIと機械学習、特にCNNについて研究されている。
本研究は, 臨床上重要な領域を同定し, 皮膚科医に効果的な画像解釈と診断信頼性を高めるためのセグメンテーション戦略を提案する。
このアプローチは皮膚科の診断と治療を進めることを約束する。
関連論文リスト
- Multiplex Imaging Analysis in Pathology: a Comprehensive Review on Analytical Approaches and Digital Toolkits [0.7968706282619793]
マルチ多重イメージングは、複数のバイオマーカーを1つのセクションで同時に視覚化することを可能にする。
多重画像からのデータは、前処理、セグメンテーション、特徴抽出、空間解析のための洗練された計算方法を必要とする。
PathMLは、画像分析を効率化するAIベースのプラットフォームで、臨床および研究環境では複雑な解釈がアクセス可能である。
論文 参考訳(メタデータ) (2024-11-01T18:02:41Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGymは、医師の実際の過程を模倣して、スライド画像全体の診断を促進することを目的としている。
私たちは、WSIベースのシナリオと選択された地域ベースのシナリオを含む、さまざまな臓器や癌のシナリオを提供しています。
論文 参考訳(メタデータ) (2024-08-16T17:19:07Z) - Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning [46.75992018094998]
胸部X線(CXR)を低分解能で診断する上での課題について検討した。
高分解能CXRイメージングは、結節や不透明など、小さなが重要な異常を識別するために重要である。
本稿では,MLCAK(Multilevel Collaborative Attention Knowledge)法を提案する。
論文 参考訳(メタデータ) (2024-05-22T06:10:54Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - Empowering Medical Imaging with Artificial Intelligence: A Review of
Machine Learning Approaches for the Detection, and Segmentation of COVID-19
Using Radiographic and Tomographic Images [2.232567376976564]
2019年以降、コロナウイルスとその新規株の世界的な普及により、新たな感染が急増している。
X線およびCTイメージング技術の使用は、新型コロナウイルスの診断と管理に重要である。
本稿では、機械学習(ML)を用いた新型コロナウイルスの診断のための医療画像の改善手法に焦点を当てた。
論文 参考訳(メタデータ) (2024-01-13T09:17:39Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
我々は最近200以上の論文をレビュー・要約し、様々な医用画像解析タスクにおける深層学習手法の適用の概要を概観した。
特に,医用画像における最先端の非教師あり半教師あり深層学習の進歩と貢献を強調した。
論文 参考訳(メタデータ) (2021-05-27T18:05:12Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。