A Comparative Analysis of Adversarial Robustness for Quantum and Classical Machine Learning Models
- URL: http://arxiv.org/abs/2404.16154v1
- Date: Wed, 24 Apr 2024 19:20:15 GMT
- Title: A Comparative Analysis of Adversarial Robustness for Quantum and Classical Machine Learning Models
- Authors: Maximilian Wendlinger, Kilian Tscharke, Pascal Debus,
- Abstract summary: We show how to investigate the similarities and differences in adversarial robustness of classical and quantum models.
Our findings show that a classical approximation of QML circuits can be seen as a "middle ground" on the quantum-classical boundary.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning (QML) continues to be an area of tremendous interest from research and industry. While QML models have been shown to be vulnerable to adversarial attacks much in the same manner as classical machine learning models, it is still largely unknown how to compare adversarial attacks on quantum versus classical models. In this paper, we show how to systematically investigate the similarities and differences in adversarial robustness of classical and quantum models using transfer attacks, perturbation patterns and Lipschitz bounds. More specifically, we focus on classification tasks on a handcrafted dataset that allows quantitative analysis for feature attribution. This enables us to get insight, both theoretically and experimentally, on the robustness of classification networks. We start by comparing typical QML model architectures such as amplitude and re-upload encoding circuits with variational parameters to a classical ConvNet architecture. Next, we introduce a classical approximation of QML circuits (originally obtained with Random Fourier Features sampling but adapted in this work to fit a trainable encoding) and evaluate this model, denoted Fourier network, in comparison to other architectures. Our findings show that this Fourier network can be seen as a "middle ground" on the quantum-classical boundary. While adversarial attacks successfully transfer across this boundary in both directions, we also show that regularization helps quantum networks to be more robust, which has direct impact on Lipschitz bounds and transfer attacks.
Related papers
- Can Geometric Quantum Machine Learning Lead to Advantage in Barcode Classification? [16.34646723046073]
We develop a geometric quantum machine learning (GQML) approach with embedded symmetries.
We show that quantum networks largely outperform their classical counterparts.
While the ability to achieve advantage largely depends on how data are loaded, we discuss how similar problems can benefit from quantum machine learning.
arXiv Detail & Related papers (2024-09-02T23:34:52Z) - Building Continuous Quantum-Classical Bayesian Neural Networks for a Classical Clinical Dataset [0.0]
We introduce a Quantum-Classical Bayesian Neural Network (QCBNN) that is capable to perform uncertainty-aware classification of medical dataset.
We track multiple behavioral metrics that capture both predictive performance as well as model's uncertainty.
It is our ambition to create a hybrid model that is capable to classify samples in a more uncertainty aware fashion.
arXiv Detail & Related papers (2024-06-10T14:23:25Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Binary classifiers for noisy datasets: a comparative study of existing
quantum machine learning frameworks and some new approaches [0.0]
We apply Quantum Machine Learning frameworks to improve binary classification.
noisy datasets are in financial datasets.
New models exhibit better learning characteristics to asymmetrical noise in the dataset.
arXiv Detail & Related papers (2021-11-05T10:29:05Z) - Phase diagram of quantum generalized Potts-Hopfield neural networks [0.0]
We introduce and analyze an open quantum generalization of the q-state Potts-Hopfield neural network.
The dynamics of this many-body system is formulated in terms of a Markovian master equation of Lindblad type.
arXiv Detail & Related papers (2021-09-21T12:48:49Z) - Quantum Machine Learning with SQUID [64.53556573827525]
We present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems.
We provide examples of using SQUID in a standard binary classification problem from the popular MNIST dataset.
arXiv Detail & Related papers (2021-04-30T21:34:11Z) - Anomaly detection with variational quantum generative adversarial
networks [0.0]
Generative adversarial networks (GANs) are a machine learning framework comprising a generative model for sampling from a target distribution.
We introduce variational quantum-classical Wasserstein GANs to address these issues and embed this model in a classical machine learning framework for anomaly detection.
Our model replaces the generator of Wasserstein GANs with a hybrid quantum-classical neural net and leaves the classical discriminative model unchanged.
arXiv Detail & Related papers (2020-10-20T17:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.