論文の概要: Blind Federated Learning without initial model
- arxiv url: http://arxiv.org/abs/2404.16180v1
- Date: Wed, 24 Apr 2024 20:10:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 16:02:40.890378
- Title: Blind Federated Learning without initial model
- Title(参考訳): 初期モデルのないブラインドフェデレーション学習
- Authors: Jose L. Salmeron, Irina Arévalo,
- Abstract要約: フェデレートラーニング(Federated Learning)は、独自のプライベートデータを持つ複数の参加者間のモデル構築を可能にする、新たな機械学習アプローチである。
この方法はセキュアでプライバシ保護であり、病院などの異なるソースからの機密データを使用して機械学習モデルをトレーニングするのに適している。
- 参考スコア(独自算出の注目度): 1.104960878651584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning is an emerging machine learning approach that allows the construction of a model between several participants who hold their own private data. This method is secure and privacy-preserving, suitable for training a machine learning model using sensitive data from different sources, such as hospitals. In this paper, the authors propose two innovative methodologies for Particle Swarm Optimisation-based federated learning of Fuzzy Cognitive Maps in a privacy-preserving way. In addition, one relevant contribution this research includes is the lack of an initial model in the federated learning process, making it effectively blind. This proposal is tested with several open datasets, improving both accuracy and precision.
- Abstract(参考訳): フェデレートラーニング(Federated Learning)は、独自のプライベートデータを持つ複数の参加者間のモデル構築を可能にする、新たな機械学習アプローチである。
この方法はセキュアでプライバシ保護であり、病院などの異なるソースからの機密データを使用して機械学習モデルをトレーニングするのに適している。
本稿では,ファジィ認知マップのファジィ学習をプライバシ保護手法として,粒子群最適化に基づく2つの革新的な手法を提案する。
さらに、この研究には、連合学習プロセスに初期モデルがないことが関係しており、効果的に盲目化している。
この提案は、いくつかのオープンデータセットでテストされており、精度と精度の両方を改善している。
関連論文リスト
- Personalized Federated Learning with Contextual Modulation and
Meta-Learning [2.7716102039510564]
フェデレーション学習は、分散データソース上で機械学習モデルをトレーニングするための有望なアプローチとして登場した。
本稿では,フェデレートラーニングとメタラーニングを併用して,効率性と一般化能力を両立させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-23T08:18:22Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
フェデレートラーニング(FL)は、分散とプライバシ保護の方法で機械学習モデルをトレーニングするための有望なパラダイムとして登場した。
モデルに使用される手法の選択は、フェデレーション学習システムの性能、収束速度、通信効率、プライバシー保証において重要な役割を果たす。
本研究は,各手法のメリットとデメリットを慎重に比較,分類,記述し,さまざまなFLシナリオに適用性について検討する。
論文 参考訳(メタデータ) (2023-10-31T23:26:58Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
フェデレーション学習は、ホワイトボックス攻撃に脆弱で、異種クライアントへの適応に苦慮している。
本稿では,選択的FD(Selective-FD)と呼ばれるFDのための選択的知識共有機構を提案する。
論文 参考訳(メタデータ) (2023-04-04T12:04:19Z) - An Empirical Study of Personalized Federated Learning [8.641606056228675]
フェデレートラーニング(Federated Learning)とは、単一のサーバと複数のクライアントが、クライアントでデータセットを共有することなく、共同で機械学習モデルを構築する分散機械学習アプローチである。
この問題に対処するため、多数のフェデレーション学習手法は、パーソナライズされたフェデレーション学習を目標とし、クライアント向けに最適化されたモデルを構築する。
個人化されたフェデレート学習手法が最高のパフォーマンスを達成するのか、これらの手法が標準的(非個人化された)フェデレート学習ではなく、どの程度の進歩を達成できるかは明らかでない。
論文 参考訳(メタデータ) (2022-06-27T11:08:16Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - Non-IID data and Continual Learning processes in Federated Learning: A
long road ahead [58.720142291102135]
フェデレートラーニング(Federated Learning)は、複数のデバイスや機関が、データをプライベートに保存しながら、機械学習モデルを協調的にトレーニングすることを可能にする、新しいフレームワークである。
本研究では,データの統計的不均一性を正式に分類し,それに直面することのできる最も顕著な学習戦略をレビューする。
同時に、継続学習のような他の機械学習フレームワークからのアプローチを導入し、データの不均一性にも対処し、フェデレートラーニング設定に容易に適応できるようにします。
論文 参考訳(メタデータ) (2021-11-26T09:57:11Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
フェデレートラーニング(FL)は、データプライバシと送信問題を克服する有望な方法として最近登場した。
FLでは、異なるデバイスやセンサーから収集されたデータセットを使用して、各学習を集中型モデル(サーバ)と共有するローカルモデル(クライアント)をトレーニングする。
本稿では,PC-FedAvg(Personalized FedAvg, PC-FedAvg)を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:57:11Z) - Privacy-Preserving Self-Taught Federated Learning for Heterogeneous Data [6.545317180430584]
フェデレーテッド・ラーニング(FL)は、各パーティのローカルデータを用いて、データを他人に公開することなく、ディープラーニングモデルのジョイントトレーニングを可能にするために提案された。
本研究では,前述の問題に対処するために,自己学習型フェデレーション学習と呼ばれるFL手法を提案する。
この方法では、潜在変数だけがモデルトレーニングのために他の当事者に送信され、プライバシはアクティベーション、重み、バイアスのデータとパラメータをローカルに保存することで保持される。
論文 参考訳(メタデータ) (2021-02-11T08:07:51Z) - Three Approaches for Personalization with Applications to Federated
Learning [68.19709953755238]
本稿では,パーソナライゼーションの体系的学習理論について述べる。
学習理論の保証と効率的なアルゴリズムを提供し、その性能を実証する。
全てのアルゴリズムはモデルに依存しず、任意の仮説クラスで機能する。
論文 参考訳(メタデータ) (2020-02-25T01:36:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。