Verifying randomness in sets of quantum states via observables
- URL: http://arxiv.org/abs/2404.16211v1
- Date: Wed, 24 Apr 2024 21:11:58 GMT
- Title: Verifying randomness in sets of quantum states via observables
- Authors: Xavier Bonet-Monroig, Hao Wang, Adrián Pérez-Salinas,
- Abstract summary: We show that Haar-randomness is connected to the Dirichlet distribution, and provide a closed-form expression, and simple bounds of the statistical moments.
We generalize this metric to permutation- and unitary-equivalent observables, ensuring that if the extended average randomness is compatible with a Haar-random distribution, then the set of states is approximately Haar-random.
- Score: 4.289151408389622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a metric, average randomness, that predicts the compatibility of a set of quantum states with the Haar-random distribution, by matching of statistical moments, through a known quantum observable. We show that Haar-randomness is connected to the Dirichlet distribution, and provide a closed-form expression, and simple bounds of the statistical moments. We generalize this metric to permutation- and unitary-equivalent observables, ensuring that if the extended average randomness is compatible with a Haar-random distribution, then the set of states is approximately Haar-random.
Related papers
- Rényi divergence-based uniformity guarantees for $k$-universal hash functions [59.90381090395222]
Universal hash functions map the output of a source to random strings over a finite alphabet.
We show that it is possible to distill random bits that are nearly uniform, as measured by min-entropy.
arXiv Detail & Related papers (2024-10-21T19:37:35Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - Conformal Nucleus Sampling [67.5232384936661]
We assess whether a top-$p$ set is indeed aligned with its probabilistic meaning in various linguistic contexts.
We find that OPT models are overconfident, and that calibration shows a moderate inverse scaling with model size.
arXiv Detail & Related papers (2023-05-04T08:11:57Z) - Shortcomings of Top-Down Randomization-Based Sanity Checks for
Evaluations of Deep Neural Network Explanations [67.40641255908443]
We identify limitations of model-randomization-based sanity checks for the purpose of evaluating explanations.
Top-down model randomization preserves scales of forward pass activations with high probability.
arXiv Detail & Related papers (2022-11-22T18:52:38Z) - Metric-Fair Classifier Derandomization [6.269732593554894]
We study the problem of classifier derandomization in machine learning.
We show that the prior derandomization approach is almost maximally metric-unfair.
We devise a derandomization procedure that provides an appealing tradeoff between these two.
arXiv Detail & Related papers (2022-06-15T21:36:57Z) - Stable Conformal Prediction Sets [0.0]
conformal prediction is a methodology that allows to estimate a confidence set for $y_n+1$ given $x_n+1$.
While appealing, the computation of such set turns out to be infeasible in general.
We combine conformal prediction techniques with algorithmic stability bounds to derive a prediction set computable with a single model fit.
arXiv Detail & Related papers (2021-12-19T18:53:32Z) - On the Generative Utility of Cyclic Conditionals [103.1624347008042]
We study whether and how can we model a joint distribution $p(x,z)$ using two conditional models $p(x|z)$ that form a cycle.
We propose the CyGen framework for cyclic-conditional generative modeling, including methods to enforce compatibility and use the determined distribution to fit and generate data.
arXiv Detail & Related papers (2021-06-30T10:23:45Z) - Adjusted chi-square test for degree-corrected block models [13.122543280692641]
We propose a goodness-of-fit test for degree-corrected block models (DCSBM)
We show that a simple adjustment allows the statistic to converge in distribution, under null, as long as the harmonic mean of $d_i$ grows to infinity.
Our distributional results are nonasymptotic, with explicit constants, providing finite-sample bounds on the Kolmogorov-Smirnov distance to the target distribution.
arXiv Detail & Related papers (2020-12-30T05:20:59Z) - $(f,\Gamma)$-Divergences: Interpolating between $f$-Divergences and
Integral Probability Metrics [6.221019624345409]
We develop a framework for constructing information-theoretic divergences that subsume both $f$-divergences and integral probability metrics (IPMs)
We show that they can be expressed as a two-stage mass-redistribution/mass-transport process.
Using statistical learning as an example, we demonstrate their advantage in training generative adversarial networks (GANs) for heavy-tailed, not-absolutely continuous sample distributions.
arXiv Detail & Related papers (2020-11-11T18:17:09Z) - Testing Goodness of Fit of Conditional Density Models with Kernels [16.003516725803774]
We propose two nonparametric statistical tests of goodness of fit for conditional distributions.
We show that our tests are consistent against any fixed alternative conditional model.
We demonstrate the interpretability of our test on a task of modeling the distribution of New York City's taxi drop-off location.
arXiv Detail & Related papers (2020-02-24T14:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.