URL: Universal Referential Knowledge Linking via Task-instructed Representation Compression
- URL: http://arxiv.org/abs/2404.16248v1
- Date: Wed, 24 Apr 2024 23:37:15 GMT
- Title: URL: Universal Referential Knowledge Linking via Task-instructed Representation Compression
- Authors: Zhuoqun Li, Hongyu Lin, Tianshu Wang, Boxi Cao, Yaojie Lu, Weixiang Zhou, Hao Wang, Zhenyu Zeng, Le Sun, Xianpei Han,
- Abstract summary: We propose universal referential knowledge linking (URL), which aims to resolve diversified referential knowledge linking tasks by one unified model.
We also construct a new benchmark to evaluate ability of models on referential knowledge linking tasks across different scenarios.
- Score: 46.43057075676104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Linking a claim to grounded references is a critical ability to fulfill human demands for authentic and reliable information. Current studies are limited to specific tasks like information retrieval or semantic matching, where the claim-reference relationships are unique and fixed, while the referential knowledge linking (RKL) in real-world can be much more diverse and complex. In this paper, we propose universal referential knowledge linking (URL), which aims to resolve diversified referential knowledge linking tasks by one unified model. To this end, we propose a LLM-driven task-instructed representation compression, as well as a multi-view learning approach, in order to effectively adapt the instruction following and semantic understanding abilities of LLMs to referential knowledge linking. Furthermore, we also construct a new benchmark to evaluate ability of models on referential knowledge linking tasks across different scenarios. Experiments demonstrate that universal RKL is challenging for existing approaches, while the proposed framework can effectively resolve the task across various scenarios, and therefore outperforms previous approaches by a large margin.
Related papers
- StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs)
We propose StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure.
Experiments show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios.
arXiv Detail & Related papers (2024-10-11T13:52:44Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - H-ensemble: An Information Theoretic Approach to Reliable Few-Shot
Multi-Source-Free Transfer [4.328706834250445]
We propose a framework named H-ensemble, which learns the optimal linear combination of source models for the target task.
Compared to previous works, H-ensemble is characterized by: 1) its adaptability to a novel MSF setting for few-shot target tasks, 2) theoretical reliability, 3) a lightweight structure easy to interpret and adapt.
We show that the H-ensemble can successfully learn the optimal task ensemble, as well as outperform prior arts.
arXiv Detail & Related papers (2023-12-19T17:39:34Z) - Prompt-based Logical Semantics Enhancement for Implicit Discourse
Relation Recognition [4.7938839332508945]
We propose a Prompt-based Logical Semantics Enhancement (PLSE) method for Implicit Discourse Relation Recognition (IDRR)
Our method seamlessly injects knowledge relevant to discourse relation into pre-trained language models through prompt-based connective prediction.
Experimental results on PDTB 2.0 and CoNLL16 datasets demonstrate that our method achieves outstanding and consistent performance against the current state-of-the-art models.
arXiv Detail & Related papers (2023-11-01T08:38:08Z) - Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning [15.41342100228504]
In deep learning, auxiliary objectives are often used to facilitate learning in situations where data is scarce.
We propose a novel framework, dubbed Detaux, whereby a weakly supervised disentanglement procedure is used to discover new unrelated classification tasks.
arXiv Detail & Related papers (2023-10-13T17:40:39Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - Provable Benefits of Representational Transfer in Reinforcement Learning [59.712501044999875]
We study the problem of representational transfer in RL, where an agent first pretrains in a number of source tasks to discover a shared representation.
We show that given generative access to source tasks, we can discover a representation, using which subsequent linear RL techniques quickly converge to a near-optimal policy.
arXiv Detail & Related papers (2022-05-29T04:31:29Z) - elBERto: Self-supervised Commonsense Learning for Question Answering [131.51059870970616]
We propose a Self-supervised Bidirectional Representation Learning of Commonsense framework, which is compatible with off-the-shelf QA model architectures.
The framework comprises five self-supervised tasks to force the model to fully exploit the additional training signals from contexts containing rich commonsense.
elBERto achieves substantial improvements on out-of-paragraph and no-effect questions where simple lexical similarity comparison does not help.
arXiv Detail & Related papers (2022-03-17T16:23:45Z) - Leveraging Semantic Parsing for Relation Linking over Knowledge Bases [80.99588366232075]
We present SLING, a relation linking framework which leverages semantic parsing using AMR and distant supervision.
SLING integrates multiple relation linking approaches that capture complementary signals such as linguistic cues, rich semantic representation, and information from the knowledgebase.
experiments on relation linking using three KBQA datasets; QALD-7, QALD-9, and LC-QuAD 1.0 demonstrate that the proposed approach achieves state-of-the-art performance on all benchmarks.
arXiv Detail & Related papers (2020-09-16T14:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.