論文の概要: Optimal and Bounded Suboptimal Any-Angle Multi-agent Pathfinding
- arxiv url: http://arxiv.org/abs/2404.16379v1
- Date: Thu, 25 Apr 2024 07:41:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 14:38:43.548192
- Title: Optimal and Bounded Suboptimal Any-Angle Multi-agent Pathfinding
- Title(参考訳): 最適・バウンドの任意の角度のマルチエージェントパスフィニング
- Authors: Konstantin Yakovlev, Anton Andreychuk, Roni Stern,
- Abstract要約: 提案手法は,最初の最適非角度マルチエージェントパスフィンディングアルゴリズムである。
我々のプランナーは、Continuous Conflict-based Search (CCBS)アルゴリズムと、Safe Interval Path Planning (TO-AA-SIPP)の最適な任意の角度変種に基づいている。
古典的MAPFから任意の角度設定、すなわち Disjoint Splitting と Multi-Constraint への2つの手法を適用する。
- 参考スコア(独自算出の注目度): 13.296796764344169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent pathfinding (MAPF) is the problem of finding a set of conflict-free paths for a set of agents. Typically, the agents' moves are limited to a pre-defined graph of possible locations and allowed transitions between them, e.g. a 4-neighborhood grid. We explore how to solve MAPF problems when each agent can move between any pair of possible locations as long as traversing the line segment connecting them does not lead to the collision with the obstacles. This is known as any-angle pathfinding. We present the first optimal any-angle multi-agent pathfinding algorithm. Our planner is based on the Continuous Conflict-based Search (CCBS) algorithm and an optimal any-angle variant of the Safe Interval Path Planning (TO-AA-SIPP). The straightforward combination of those, however, scales poorly since any-angle path finding induces search trees with a very large branching factor. To mitigate this, we adapt two techniques from classical MAPF to the any-angle setting, namely Disjoint Splitting and Multi-Constraints. Experimental results on different combinations of these techniques show they enable solving over 30% more problems than the vanilla combination of CCBS and TO-AA-SIPP. In addition, we present a bounded-suboptimal variant of our algorithm, that enables trading runtime for solution cost in a controlled manner.
- Abstract(参考訳): マルチエージェントパスフィンディング(MAPF)は、エージェントの集合に対するコンフリクトフリーパスの集合を見つける問題である。
通常、エージェントの動きは、考えられる位置の事前定義されたグラフに制限され、それらの間の遷移を許容する。
我々は,各エージェントが接続する線分を横切る限り,可能な場所を移動できる場合のMAPF問題の解決方法について検討するが,障害との衝突は起こらない。
これは任意の角度のパスフィニングとして知られている。
提案手法は,最初の最適非角度マルチエージェントパスフィンディングアルゴリズムである。
我々のプランナーは、Continuous Conflict-based Search (CCBS)アルゴリズムと、Safe Interval Path Planning (TO-AA-SIPP)の最適な任意の角度の変形に基づいている。
しかし、これらの直接的な組み合わせは、どの角度の経路も非常に大きな分岐係数を持つ探索木を誘導するので、スケールが良くない。
これを緩和するために、古典的MAPFから任意の角度設定、すなわち Disjoint Splitting と Multi-Constraints への2つの手法を適用する。
これらの組み合わせによる実験結果は、CBSとTO-AA-SIPPのバニラ組み合わせよりも30%以上の問題を解くことができることを示している。
さらに,制御された方法でソリューションコストのトレーディングランタイムを実現するアルゴリズムの,有界-準最適変種を提案する。
関連論文リスト
- Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
MAPF (Multi-Agent Path Finding) は、複数のエージェントが同時に移動し、与えられた目標地点に向かって共有領域を通って衝突しない経路を決定する。
最適解を見つけることは、しばしば計算不可能であり、近似的な準最適アルゴリズムを用いることが不可欠である。
本稿では、MAPFのスケーラブルな機構設計の問題を紹介し、MAPFアルゴリズムを近似した3つの戦略防御機構を提案する。
論文 参考訳(メタデータ) (2024-01-30T14:26:04Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
マルチエージェントパスフィンディング問題は、グラフに閉じ込められたエージェントのグループに対するコンフリクトフリーパスのセットを見つけることである。
本研究では、エージェントが他のエージェントをローカルにのみ観察できる分散MAPF設定に焦点を当てた。
MAPFタスクのための分散マルチエージェントモンテカルロ木探索法を提案する。
論文 参考訳(メタデータ) (2023-12-26T06:57:22Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
マルチエージェントパスフィンディングに適したモンテカルロ木探索(MCTS)のオリジナル版を紹介する。
具体的には,エージェントの目標達成行動を支援するために,個別の経路を用いる。
また,木探索手順の分岐係数を低減するために,専用の分解手法を用いる。
論文 参考訳(メタデータ) (2023-07-25T12:33:53Z) - Fine-Grained Complexity Analysis of Multi-Agent Path Finding on 2D Grids [0.190365714903665]
エージェントを2つのチームに分けた2色MAPFがNPハードのままであることを示す。
フロータイムの目的のために,エージェントの移動数に基づいてトラクタビリティフロンティアを確立する。
この結果は最適解の構造に新たな光を当て、一般的な問題のアルゴリズム設計を導くのに役立つかもしれない。
論文 参考訳(メタデータ) (2023-05-25T17:56:24Z) - Multi-Phase Relaxation Labeling for Square Jigsaw Puzzle Solving [73.58829980121767]
本稿では,大域最適化に基づく二乗ジグソーパズルの解法を提案する。
この手法は完全に自動化されており、事前情報を前提とせず、未知または未知のピースオリエンテーションでパズルを扱うことができる。
論文 参考訳(メタデータ) (2023-03-26T18:53:51Z) - LaCAM: Search-Based Algorithm for Quick Multi-Agent Pathfinding [5.025654873456756]
MAPF(LaCAM)の遅延制約付加探索という,マルチエージェントパスフィンディング(MAPF)のための新しい完全アルゴリズムを提案する。
LaCAMは2段階の検索を使って、何百ものエージェントでも素早くソリューションを見つける。
実験の結果,LaCAMは様々なシナリオにおいて最先端のMAPFアルゴリズムに匹敵する,あるいは優れることがわかった。
論文 参考訳(メタデータ) (2022-11-24T06:27:18Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Decentralised Approach for Multi Agent Path Finding [6.599344783327053]
MAPF (Multi Agent Path Finding) は、空間的に拡張されたエージェントに対する競合のない経路の同定を必要とする。
これらは、Convoy Movement ProblemやTraning Schedulingといった現実世界の問題に適用できる。
提案手法であるDecentralized Multi Agent Path Finding (DeMAPF) は、MAPFを経路計画と割り当ての問題の系列として扱う。
論文 参考訳(メタデータ) (2021-06-03T18:07:26Z) - Pairwise Symmetry Reasoning for Multi-Agent Path Finding Search [43.40580211016752]
マルチエージェントパス発見(mapf)は,協調エージェントのチームに対して,衝突のないパスを計画することを求める課題である。
MAPFが解決しにくい理由の1つは、ペアワイズ対称性と呼ばれる現象によるものであることを示しています。
対称性の発生を効率的に検出し、特殊な制約を用いて解決する様々な推論手法を提案します。
論文 参考訳(メタデータ) (2021-03-12T07:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。