Wavefunction collapse driven by non-Hermitian disturbance
- URL: http://arxiv.org/abs/2404.16445v1
- Date: Thu, 25 Apr 2024 09:25:17 GMT
- Title: Wavefunction collapse driven by non-Hermitian disturbance
- Authors: Jorge Martinez Romeral, Luis E. F. Foa Torres, Stephan Roche,
- Abstract summary: We model the interaction between a quantum particle and an "apparatus" through a non-Hermitian Hamiltonian term.
We analyze how the strength and other parameters of the non-Hermitian perturbation influence the time-to-collapse of the wave function.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the context of the measurement problem, we propose to model the interaction between a quantum particle and an "apparatus" through a non-Hermitian Hamiltonian term. We simulate the time evolution of a normalized quantum state split into two spin components (via a Stern-Gerlach experiment) and that undergoes a wave-function collapse driven by a non-Hermitian Hatano-Nelson Hamiltonian. We further analyze how the strength and other parameters of the non-Hermitian perturbation influence the time-to-collapse of the wave function obtained under a Schr\"{o}dinger-type evolution. We finally discuss a thought experiment where manipulation of the apparatus could challenge standard quantum mechanics predictions.
Related papers
- Entangled in Spacetime [0.0]
The Delayed-Choice Quantum Eraser demonstrates the relationship between quantum measurement, wave-particle duality, and the temporal ordering of observations.
By utilizing the principles of quantum superposition, entanglement, and the non-local collapse of the wave function, we seek to rationalize the counterintuitive outcomes observed in the experiment.
arXiv Detail & Related papers (2024-09-04T00:57:23Z) - A non-Hermitian loop for a quantum measurement [0.0]
We establish a framework for a mechanism steering state vector collapse through time evolution.
For two-level systems, we put forward the phenomenon of chiral state conversion as a mechanism effectively eliminating superpositions.
arXiv Detail & Related papers (2024-08-08T17:59:10Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Describing the Wave Function Collapse Process with a State-dependent
Hamiltonian [3.8326963933937885]
We show how the continuous collapse of the wave function can be described by the Schr"odinger equation with a time-dependent Hamiltonian.
We then discuss how the above formalism can also be applied to describe the collapse of the wave function of mixed quantum states.
arXiv Detail & Related papers (2023-01-23T05:08:35Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum Dynamics under continuous projective measurements: non-Hermitian
description and the continuous space limit [0.0]
The time of arrival of a quantum system in a specified state is considered in the framework of the repeated measurement protocol.
For a particular choice of system-detector coupling, the Zeno effect is avoided and the system can be described effectively by a non-Hermitian effective Hamiltonian.
arXiv Detail & Related papers (2020-12-02T13:29:22Z) - In Praise and in Criticism of the Model of Continuous Spontaneous
Localization of the Wave-Function [0.0]
Different attempts to solve the measurement problem of the quantum mechanics (QM) failed because the changes in the quantum formalism lead to contradictions with predictions.
The present work has two purposes: 1) proving that the collapse is unavoidable; 2) applying the CSL model to the process in a detector and showing step by step the modification of the wave-function, until reduction.
arXiv Detail & Related papers (2020-10-06T12:04:41Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.