Towards Precise Observations of Neural Model Robustness in Classification
- URL: http://arxiv.org/abs/2404.16457v1
- Date: Thu, 25 Apr 2024 09:37:44 GMT
- Title: Towards Precise Observations of Neural Model Robustness in Classification
- Authors: Wenchuan Mu, Kwan Hui Lim,
- Abstract summary: In deep learning applications, robustness measures the ability of neural models that handle slight changes in input data.
Our approach contributes to a deeper understanding of model robustness in safety-critical applications.
- Score: 2.127049691404299
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In deep learning applications, robustness measures the ability of neural models that handle slight changes in input data, which could lead to potential safety hazards, especially in safety-critical applications. Pre-deployment assessment of model robustness is essential, but existing methods often suffer from either high costs or imprecise results. To enhance safety in real-world scenarios, metrics that effectively capture the model's robustness are needed. To address this issue, we compare the rigour and usage conditions of various assessment methods based on different definitions. Then, we propose a straightforward and practical metric utilizing hypothesis testing for probabilistic robustness and have integrated it into the TorchAttacks library. Through a comparative analysis of diverse robustness assessment methods, our approach contributes to a deeper understanding of model robustness in safety-critical applications.
Related papers
- Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - Towards Certified Probabilistic Robustness with High Accuracy [3.957941698534126]
Adrial examples pose a security threat to many critical systems built on neural networks.
How to build certifiably robust yet accurate neural network models remains an open problem.
We propose a novel approach that aims to achieve both high accuracy and certified probabilistic robustness.
arXiv Detail & Related papers (2023-09-02T09:39:47Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - SoK: Modeling Explainability in Security Analytics for Interpretability,
Trustworthiness, and Usability [2.656910687062026]
Interpretability, trustworthiness, and usability are key considerations in high-stake security applications.
Deep learning models behave as black boxes in which identifying important features and factors that led to a classification or a prediction is difficult.
Most explanation methods provide inconsistent explanations, have low fidelity, and are susceptible to adversarial manipulation.
arXiv Detail & Related papers (2022-10-31T15:01:49Z) - Quantifying Robustness to Adversarial Word Substitutions [24.164523751390053]
Deep-learning-based NLP models are found to be vulnerable to word substitution perturbations.
We propose a formal framework to evaluate word-level robustness.
metric helps us figure out why state-of-the-art models like BERT can be easily fooled by a few word substitutions.
arXiv Detail & Related papers (2022-01-11T08:18:39Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
We present a semi-formal verification approach for decision-making tasks based on interval analysis.
Our method obtains comparable results over standard benchmarks with respect to formal verifiers.
Our approach allows to efficiently evaluate safety properties for decision-making models in practical applications.
arXiv Detail & Related papers (2020-10-19T11:18:06Z) - Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems [34.945482759378734]
We employ a probabilistic approach to safety evaluation in simulation, where we are concerned with computing the probability of dangerous events.
We develop a novel rare-event simulation method that combines exploration, exploitation, and optimization techniques to find failure modes and estimate their rate of occurrence.
arXiv Detail & Related papers (2020-08-24T17:46:27Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.