論文の概要: Optimal depth and a novel approach to variational quantum process tomography
- arxiv url: http://arxiv.org/abs/2404.16541v1
- Date: Thu, 25 Apr 2024 11:58:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 13:49:56.913061
- Title: Optimal depth and a novel approach to variational quantum process tomography
- Title(参考訳): 変分量子プロセストモグラフィーにおける最適深さと新しいアプローチ
- Authors: Vladlen Galetsky, Pol Julià Farré, Soham Ghosh, Christian Deppe, Roberto Ferrara,
- Abstract要約: 本稿では,変分量子回路(VQC)のプロセストモグラフィーを,PT_VQCとU-VQSVDの2つの新しい方式を提案する。
技術の現状と比較すると、PT_VQCはプロセストモグラフィーに必要なキュービットをそれぞれ実行している。
U-VQSVDは、量子ビット次元に応じて2から5の係数で(ランダムに生成された入力状態を用いて)非インフォーム攻撃より優れる。
- 参考スコア(独自算出の注目度): 11.496254312838659
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present two new methods for Variational Quantum Circuit (VQC) Process Tomography onto $n$ qubits systems: PT_VQC and U-VQSVD. Compared to the state of the art, PT_VQC halves in each run the required amount of qubits for process tomography and decreases the required state initializations from $4^{n}$ to just $2^{n}$, all while ensuring high-fidelity reconstruction of the targeted unitary channel $U$. It is worth noting that, for a fixed reconstruction accuracy, PT_VQC achieves faster convergence per iteration step compared to Quantum Deep Neural Network (QDNN) and tensor network schemes. The novel U-VQSVD algorithm utilizes variational singular value decomposition to extract eigenvectors (up to a global phase) and their associated eigenvalues from an unknown unitary representing a general channel. We assess the performance of U-VQSVD by executing an attack on a non-unitary channel Quantum Physical Unclonable Function (QPUF). U-VQSVD outperforms an uninformed impersonation attack (using randomly generated input states) by a factor of 2 to 5, depending on the qubit dimension. For the two presented methods, we propose a new approach to calculate the complexity of the displayed VQC, based on what we denote as optimal depth.
- Abstract(参考訳): 本稿では,変分量子回路(VQC)のプロセストモグラフィーを,PT_VQCとU-VQSVDの2つの新しい方式を提案する。
最先端と比較して、PT_VQCはプロセストモグラフィーに必要なキュービット数を実行し、必要な状態の初期化を$4^{n}$から$2^{n}$に減らし、ターゲットとするユニタリチャネルを高忠実に再構築する。
なお、PT_VQCは、量子ディープニューラルネットワーク(QDNN)やテンソルネットワーク方式と比較して、反復ステップ毎の収束が速いことに注意する必要がある。
U-VQSVDアルゴリズムは変分特異値分解を用いて、一般チャネルを表す未知のユニタリから固有ベクトルとその関連する固有値を抽出する。
本報告では,U-VQSVDの性能を評価するために,QPUF (Quantum Physical Unclonable Function) を攻撃した。
U-VQSVDは、量子ビット次元に応じて2から5の係数で(ランダムに生成された入力状態を用いて)非インフォームな偽造攻撃より優れる。
提案手法は, 表示されたVQCの複雑さを, 最適深さとして表現するものに基づいて計算する手法である。
関連論文リスト
- Lazy Qubit Reordering for Accelerating Parallel State-Vector-based Quantum Circuit Simulation [0.0]
量子回路シミュレーションのための2つの量子演算スケジューリング手法を提案する。
提案手法は、qubitリオーダーによる全対全通信を削減する。
本稿では,変分量子固有解法(VQE)シミュレーションにおける2つの主要な手順に適したこれらの手法を開発した。
論文 参考訳(メタデータ) (2024-10-05T18:20:37Z) - Distribution-Flexible Subset Quantization for Post-Quantizing
Super-Resolution Networks [68.83451203841624]
本稿では,超高分解能ネットワークのためのポストトレーニング量子化手法であるDFSQを提案する。
DFSQは活性化のチャネルワイド正規化を行い、分布フレキシブルなサブセット量子化(SQ)を適用する
6ビットの量子化と8ビットの量子化では完全精度に匹敵する性能を達成し、4ビットの量子化では0.1dBのPSNR低下しか生じない。
論文 参考訳(メタデータ) (2023-05-10T04:19:11Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
我々は、非コヒーレント光子によって形成される環境を、非コヒーレント制御によるオープン量子系制御の資源とみなす。
我々は、ハミルトニアンにおけるコヒーレント制御と、時間依存デコヒーレンス率を誘導する散逸器における非コヒーレント制御を利用する。
論文 参考訳(メタデータ) (2023-02-28T07:36:02Z) - Automatic Network Adaptation for Ultra-Low Uniform-Precision
Quantization [6.1664476076961146]
一様精度ニューラルネットワーク量子化は、高計算能力のために高密度に充填された演算ユニットを単純化したため、人気を集めている。
層間の量子化誤差の影響に対して不均一な感度を無視し、結果として準最適推論をもたらす。
本研究は,超低精度量子化による精度劣化を軽減するために,ニューラルネットワーク構造を調整するニューラルチャネル拡張と呼ばれる新しいニューラルアーキテクチャ探索を提案する。
論文 参考訳(メタデータ) (2022-12-21T09:41:25Z) - RepQ-ViT: Scale Reparameterization for Post-Training Quantization of
Vision Transformers [2.114921680609289]
視覚変換器のための新しいPTQフレームワークRepQ-ViTを提案する。
RepQ-ViTは量子化と推論プロセスを分離する。
既存の強力なベースラインを上回り、ViTの4ビットPTQの精度を有効レベルまで向上させることができる。
論文 参考訳(メタデータ) (2022-12-16T02:52:37Z) - Optimizing the depth of variational quantum algorithms is strongly
QCMA-hard to approximate [0.6445605125467572]
変分量子アルゴリズム (VQA) は、量子ハードウェアへの短期的応用に向けて激しい研究が行われている。
VQA の重要なパラメータは変分アンザッツ' のエンプデプス' である。
与えられたVQAアンザッツの最適深さを近似することは困難であることを示す。
論文 参考訳(メタデータ) (2022-11-22T19:00:01Z) - Learning Representations for CSI Adaptive Quantization and Feedback [51.14360605938647]
本稿では,周波数分割二重化システムにおける適応量子化とフィードバックの効率的な手法を提案する。
既存の研究は主に、CSI圧縮のためのオートエンコーダ(AE)ニューラルネットワークの実装に焦点を当てている。
1つはポストトレーニング量子化に基づくもので、もう1つはAEのトレーニング中にコードブックが見つかる方法である。
論文 参考訳(メタデータ) (2022-07-13T08:52:13Z) - ORQVIZ: Visualizing High-Dimensional Landscapes in Variational Quantum
Algorithms [51.02972483763309]
変分量子アルゴリズム(VQA)は、量子コンピュータの実用的な応用を見つけるための有望な候補である。
この作業には、オープンソースのPythonパッケージである$textitorqviz$のリリースが伴っている。
論文 参考訳(メタデータ) (2021-11-08T18:17:59Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
量子コンピュータ上で励起状態を作成するための2つの異なる方法を研究する。
シミュレーションおよび実量子デバイス上でこれらの手法をベンチマークする。
これらの結果から,フォールトトレラントデバイスに優れたスケーリングを実現するために設計された量子技術が,接続性やゲート忠実性に制限されたデバイスに実用的なメリットをもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-28T17:21:25Z) - MoG-VQE: Multiobjective genetic variational quantum eigensolver [0.0]
変分量子固有解法 (VQE) は、近距離量子コンピュータのための最初の実用的なアルゴリズムとして登場した。
本稿では,低深度と精度の向上を両立させる手法を提案する。
2ビットゲート数の10倍近く削減されるのを、標準のハードウェア効率のアンサッツと比較して観察する。
論文 参考訳(メタデータ) (2020-07-08T20:44:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。