Research on geometric figure classification algorithm based on Deep Learning
- URL: http://arxiv.org/abs/2404.16561v1
- Date: Thu, 25 Apr 2024 12:18:04 GMT
- Title: Research on geometric figure classification algorithm based on Deep Learning
- Authors: Ruiyang Wang, Haonan Wang, Junfeng Sun, Mingjia Zhao, Meng Liu,
- Abstract summary: The proposed geometric pattern recognition algorithm model is faster in the training data set.
The cross-entropy loss function is used in the recognition process to improve the generalization of the model.
- Score: 13.801161624212437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, with the rapid development of computer information technology, the development of artificial intelligence has been accelerating. The traditional geometry recognition technology is relatively backward and the recognition rate is low. In the face of massive information database, the traditional algorithm model inevitably has the problems of low recognition accuracy and poor performance. Deep learning theory has gradually become a very important part of machine learning. The implementation of convolutional neural network (CNN) reduces the difficulty of graphics generation algorithm. In this paper, using the advantages of lenet-5 architecture sharing weights and feature extraction and classification, the proposed geometric pattern recognition algorithm model is faster in the training data set. By constructing the shared feature parameters of the algorithm model, the cross-entropy loss function is used in the recognition process to improve the generalization of the model and improve the average recognition accuracy of the test data set.
Related papers
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Image classification network enhancement methods based on knowledge
injection [8.885876832491917]
This paper proposes a multi-level hierarchical deep learning algorithm.
It is composed of multi-level hierarchical deep neural network architecture and multi-level hierarchical deep learning framework.
The experimental results show that the proposed algorithm can effectively explain the hidden information of the neural network.
arXiv Detail & Related papers (2024-01-09T09:11:41Z) - Forward-Forward Algorithm for Hyperspectral Image Classification: A
Preliminary Study [0.0]
Forward-forward algorithm (FFA) computes local goodness functions to optimize network parameters.
This study investigates the application of FFA for hyperspectral image classification.
arXiv Detail & Related papers (2023-07-01T05:39:28Z) - Advances on Concept Drift Detection in Regression Tasks using Social
Networks Theory [5.25961378238154]
Scale-free Network Regressor (SFNR) is a dynamic ensemble-based method for regression that employs social networks theory.
In order to detect concept drifts SFNR uses the Adaptive Window (ADWIN) algorithm.
Results show improvements in accuracy, especially in concept drift situations.
arXiv Detail & Related papers (2023-04-19T16:13:28Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Incremental Learning via Rate Reduction [26.323357617265163]
Current deep learning architectures suffer from catastrophic forgetting, a failure to retain knowledge of previously learned classes when incrementally trained on new classes.
We propose utilizing an alternative "white box" architecture derived from the principle of rate reduction, where each layer of the network is explicitly computed without back propagation.
Under this paradigm, we demonstrate that, given a pre-trained network and new data classes, our approach can provably construct a new network that emulates joint training with all past and new classes.
arXiv Detail & Related papers (2020-11-30T07:23:55Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
We propose a method to automatically find a compact and problem-specific network for graph convolutional networks in a progressive manner.
Experimental results on two datasets for skeleton-based human action recognition indicate that the proposed method has competitive or even better classification performance.
arXiv Detail & Related papers (2020-11-11T09:57:49Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.