Advances on Concept Drift Detection in Regression Tasks using Social
Networks Theory
- URL: http://arxiv.org/abs/2304.09788v1
- Date: Wed, 19 Apr 2023 16:13:28 GMT
- Title: Advances on Concept Drift Detection in Regression Tasks using Social
Networks Theory
- Authors: Jean Paul Barddal and Heitor Murilo Gomes and Fabr\'icio Enembreck
- Abstract summary: Scale-free Network Regressor (SFNR) is a dynamic ensemble-based method for regression that employs social networks theory.
In order to detect concept drifts SFNR uses the Adaptive Window (ADWIN) algorithm.
Results show improvements in accuracy, especially in concept drift situations.
- Score: 5.25961378238154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mining data streams is one of the main studies in machine learning area due
to its application in many knowledge areas. One of the major challenges on
mining data streams is concept drift, which requires the learner to discard the
current concept and adapt to a new one. Ensemble-based drift detection
algorithms have been used successfully to the classification task but usually
maintain a fixed size ensemble of learners running the risk of needlessly
spending processing time and memory. In this paper we present improvements to
the Scale-free Network Regressor (SFNR), a dynamic ensemble-based method for
regression that employs social networks theory. In order to detect concept
drifts SFNR uses the Adaptive Window (ADWIN) algorithm. Results show
improvements in accuracy, especially in concept drift situations and better
performance compared to other state-of-the-art algorithms in both real and
synthetic data.
Related papers
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Research on geometric figure classification algorithm based on Deep Learning [13.801161624212437]
The proposed geometric pattern recognition algorithm model is faster in the training data set.
The cross-entropy loss function is used in the recognition process to improve the generalization of the model.
arXiv Detail & Related papers (2024-04-25T12:18:04Z) - Liquid Neural Network-based Adaptive Learning vs. Incremental Learning for Link Load Prediction amid Concept Drift due to Network Failures [37.66676003679306]
Adapting to concept drift is a challenging task in machine learning.
In communication networks, such issue emerges when performing traffic forecasting following afailure event.
We propose an approach that exploits adaptive learning algorithms, namely, liquid neural networks, which are capable of self-adaptation to abrupt changes in data patterns without requiring any retraining.
arXiv Detail & Related papers (2024-04-08T08:47:46Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Autoregressive based Drift Detection Method [0.0]
We propose a new concept drift detection method based on autoregressive models called ADDM.
Our results show that this new concept drift detection method outperforms the state-of-the-art drift detection methods.
arXiv Detail & Related papers (2022-03-09T14:36:16Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
Uncertainty Drift Detection (UDD) is able to detect drifts without access to true labels.
In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model.
We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
arXiv Detail & Related papers (2021-07-05T08:56:36Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z) - DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift [12.579800289829963]
When learning from streaming data, a change in the data distribution, also known as concept drift, can render a previously-learned model inaccurate.
We present an adaptive learning algorithm that extends previous drift-detection-based methods by incorporating drift detection into a broader stable-state/reactive-state process.
The algorithm is generic in its base learner and can be applied across a variety of supervised learning problems.
arXiv Detail & Related papers (2020-03-13T23:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.