Linear-optical approach to encoding qubits into harmonic-oscillator modes via quantum walks
- URL: http://arxiv.org/abs/2404.16594v1
- Date: Thu, 25 Apr 2024 13:18:08 GMT
- Title: Linear-optical approach to encoding qubits into harmonic-oscillator modes via quantum walks
- Authors: Jun-Yi Wu, Shin-Tza Wu,
- Abstract summary: We propose a linear-optical scheme that allows encoding grid-state quantum bits (qubits) into a bosonic mode.
We employ the cat state as a quantum coin that enables encoding approximate Gottesman-Kitaev-Preskill (GKP) qubits through quantum walk of a squeezed vacuum state in phase space.
- Score: 0.9668407688201361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a linear-optical scheme that allows encoding grid-state quantum bits (qubits) into a bosonic mode using cat state and post-selection as sources of non-Gaussianity in the encoding. As a linear-optical realization of the quantum-walk encoding scheme in [Lin {\em et al.}, Quantum Info. Processing {\bf 19}, 272 (2020)], we employ the cat state as a quantum coin that enables encoding approximate Gottesman-Kitaev-Preskill (GKP) qubits through quantum walk of a squeezed vacuum state in phase space. We show that the conditional phase-space displacement necessary for the encoding can be realized through a Mach-Zehnder interferometer (MZI) assisted with ancillary cat-state input under appropriate parameter regimes. By analyzing the fidelity of the MZI-based displacement operation, we identify the region of parameter space over which the proposed linear-optical scheme can generate grid-state qubits with high fidelity. With adequate parameter setting, our proposal should be accessible to current optical and superconducting-circuit platforms in preparing grid-state qubits for bosonic modes in the, respectively, optical and microwave domains.
Related papers
- Quantum Circuit Mapping for Universal and Scalable Computing in
MZI-based Integrated Photonics [0.0]
We propose an approach to move toward a universal and scalable LOQC on the integrated photonic platform.
We introduce a swap photonic network that maps the regularly-labeled structure of the new path-encoded qubits to the structure needed for the post-selected CZ.
In this way, we can deterministically exchange the locations of the qubits and execute controlled quantum gates between any path-encoded qubits.
arXiv Detail & Related papers (2024-01-30T10:29:13Z) - Mapping quantum circuits to shallow-depth measurement patterns based on
graph states [0.0]
We create a hybrid simulation technique for measurement-based quantum computing.
We show that groups of fully commuting operators can be implemented using fully-parallel, i.e., non-adaptive, measurements.
We discuss how such circuits can be implemented in constant quantum depths by employing quantum teleportation.
arXiv Detail & Related papers (2023-11-27T19:00:00Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Quantum nondemolition measurements with optical parametric amplifiers
for ultrafast universal quantum information processing [0.0]
Realization of a room-temperature ultra-fast photon-number-resolving (PNR) quantum nondemolition (QND) measurement would have significant implications for photonic quantum information processing (QIP)
We show that a coherent pump field driving a phase-mismatched optical parametric amplifier (OPA) experiences displacements conditioned on the number of signal Bogoliubov excitations.
A measurement of the pump displacement thus provides a QND measurement of the signal Bogoliubov excitations, projecting the signal mode to a squeezed photon-number state.
arXiv Detail & Related papers (2022-09-02T15:23:40Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Probing phases of quantum matter with an ion-trap tensor-network quantum
eigensolver [1.291175895836647]
We encode a TN ansatz state directly into a quantum simulator, which can potentially offer an exponential advantage over purely numerical simulation.
In particular, we demonstrate the optimization of a quantum-encoded TN ansatz state using a variational quantum eigensolver on an ion-trap quantum computer.
arXiv Detail & Related papers (2022-03-24T18:00:19Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - High-fidelity quantum gates for OAM qudits on quantum memory [0.0]
We propose a method for implementing single-qudit gates for qudits based on light modes with orbital angular momentum.
We show that the considered gates provide an extremely high level of fidelity of single-qudit transformations.
arXiv Detail & Related papers (2021-05-25T19:13:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.