Features Fusion for Dual-View Mammography Mass Detection
- URL: http://arxiv.org/abs/2404.16718v1
- Date: Thu, 25 Apr 2024 16:30:30 GMT
- Title: Features Fusion for Dual-View Mammography Mass Detection
- Authors: Arina Varlamova, Valery Belotsky, Grigory Novikov, Anton Konushin, Evgeny Sidorov,
- Abstract summary: We propose a new model called MAMM-Net, which allows the processing of both mammography views simultaneously.
Our experiments show superior performance on the publicM dataset compared to the previous state-of-the-art model.
- Score: 1.5146068448101746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detection of malignant lesions on mammography images is extremely important for early breast cancer diagnosis. In clinical practice, images are acquired from two different angles, and radiologists can fully utilize information from both views, simultaneously locating the same lesion. However, for automatic detection approaches such information fusion remains a challenge. In this paper, we propose a new model called MAMM-Net, which allows the processing of both mammography views simultaneously by sharing information not only on an object level, as seen in existing works, but also on a feature level. MAMM-Net's key component is the Fusion Layer, based on deformable attention and designed to increase detection precision while keeping high recall. Our experiments show superior performance on the public DDSM dataset compared to the previous state-of-the-art model, while introducing new helpful features such as lesion annotation on pixel-level and classification of lesions malignancy.
Related papers
- Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI [1.8420387715849447]
Diffusion probabilistic models (DPMs) have exhibited significant effectiveness in computer vision tasks.
Their notable performance heavily relies on labelled datasets, which limits their application in medical images.
This paper introduces a novel framework by incorporating distinctive discrepancy features.
arXiv Detail & Related papers (2024-05-08T11:26:49Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - MAEDiff: Masked Autoencoder-enhanced Diffusion Models for Unsupervised
Anomaly Detection in Brain Images [40.89943932086941]
We propose a novel Masked Autoencoder-enhanced Diffusion Model (MAEDiff) for unsupervised anomaly detection in brain images.
The MAEDiff involves a hierarchical patch partition. It generates healthy images by overlapping upper-level patches and implements a mechanism based on the masked autoencoders operating on the sub-level patches to enhance the condition on the unnoised regions.
arXiv Detail & Related papers (2024-01-19T08:54:54Z) - AlignTransformer: Hierarchical Alignment of Visual Regions and Disease
Tags for Medical Report Generation [50.21065317817769]
We propose an AlignTransformer framework, which includes the Align Hierarchical Attention (AHA) and the Multi-Grained Transformer (MGT) modules.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that the AlignTransformer can achieve results competitive with state-of-the-art methods on the two datasets.
arXiv Detail & Related papers (2022-03-18T13:43:53Z) - Mammograms Classification: A Review [0.0]
Mammogram images have been utilized in developing computer-aided diagnosis systems.
Researchers have proved that artificial intelligence with its emerging technologies can be used in the early detection of the disease.
arXiv Detail & Related papers (2022-03-04T19:22:35Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
We propose an Anatomy-aware Graph convolutional Network (AGN) for mammogram mass detection.
AGN is tailored for mammogram mass detection and endows existing detection methods with multi-view reasoning ability.
Experiments on two standard benchmarks reveal that AGN significantly exceeds the state-of-the-art performance.
arXiv Detail & Related papers (2021-05-21T06:48:34Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Dual Convolutional Neural Networks for Breast Mass Segmentation and
Diagnosis in Mammography [18.979126709943085]
We introduce a novel deep learning framework for mammogram image processing, which computes mass segmentation and simultaneously predict diagnosis results.
Our method is constructed in a dual-path architecture that solves the mapping in a dual-problem manner.
Experimental results show that DualCoreNet achieves the best mammography segmentation and classification simultaneously, outperforming recent state-of-the-art models.
arXiv Detail & Related papers (2020-08-07T02:23:36Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
We present a novel generative adversarial network (GAN) model for data augmentation that can realistically synthesize and remove lesions on mammograms.
With self-attention and semi-supervised learning components, the U-net-based architecture can generate high resolution (256x256px) outputs.
arXiv Detail & Related papers (2020-05-29T21:23:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.