論文の概要: Tverberg's theorem and multi-class support vector machines
- arxiv url: http://arxiv.org/abs/2404.16724v1
- Date: Thu, 25 Apr 2024 16:37:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 13:10:51.007997
- Title: Tverberg's theorem and multi-class support vector machines
- Title(参考訳): トヴァーバーグの定理と多クラスサポートベクトルマシン
- Authors: Pablo Soberón,
- Abstract要約: マルチクラスサポートベクターマシン(SVM)の新しいモデルの設計方法について述べる。
これらのプロトコルは点の集合を分類する条件を少なくし、高次元空間における既存のバイナリSVMアルゴリズムを用いて計算することができる。
本稿では,Veelaert による最大のマージン SVM に対するサポートベクトルの幾何学的特徴付けの新しい簡単な証明を与える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show how, using linear-algebraic tools developed to prove Tverberg's theorem in combinatorial geometry, we can design new models of multi-class support vector machines (SVMs). These supervised learning protocols require fewer conditions to classify sets of points, and can be computed using existing binary SVM algorithms in higher-dimensional spaces, including soft-margin SVM algorithms. We describe how the theoretical guarantees of standard support vector machines transfer to these new classes of multi-class support vector machines. We give a new simple proof of a geometric characterization of support vectors for largest margin SVMs by Veelaert.
- Abstract(参考訳): 本稿では,Tverbergの定理を組合せ幾何学で証明するために開発された線形代数ツールを用いて,マルチクラスサポートベクトルマシン(SVM)の新しいモデルを設計する方法を示す。
これらの教師付き学習プロトコルは点の集合を分類する条件を少なくし、ソフトマージンSVMアルゴリズムを含む高次元空間における既存のバイナリSVMアルゴリズムを用いて計算することができる。
本稿では,標準サポートベクトルマシンの理論的保証が,これらの新しいクラスであるマルチクラスサポートベクトルマシンにどのように転送されるかを説明する。
本稿では,Veelaert による最大のマージン SVM に対するサポートベクトルの幾何学的特徴付けの新しい簡単な証明を与える。
関連論文リスト
- Multi-class Support Vector Machine with Maximizing Minimum Margin [67.51047882637688]
Support Vector Machine (SVM) は、パターン認識タスクに広く応用されている機械学習技術である。
本稿では,クラス損失のペア化と最小マージンの最大化を両立するマルチクラスSVMの新たな手法を提案する。
実験により,提案手法の有効性と優位性を示す。
論文 参考訳(メタデータ) (2023-12-11T18:09:55Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
マルチタスク学習(MTL)はタスク関連性を活用して性能を向上させる。
タスクインデックスに対応する各モードを持つ高次テンソルを用いて、複数のインデックスが参照するタスクを自然に表現する。
テンソル化サポートベクターマシン(SVM)と最小2乗サポートベクターマシン(LSSVM)を併用した低ランクMTL手法の汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T14:28:26Z) - New Equivalences Between Interpolation and SVMs: Kernels and Structured
Features [22.231455330003328]
本稿では、任意のカーネルを再生するヒルベルト空間において、ラベルに対するフレキシブルな生成モデルのクラスでSVPを証明するための新しいフレキシブルな分析フレームワークを提案する。
我々は、SVPが以前の作業でカバーされていない多くの興味深い設定で発生していることを示し、カーネルSVM分類のための新しい一般化結果を証明するためにこれらの結果を活用する。
論文 参考訳(メタデータ) (2023-05-03T17:52:40Z) - Handling Imbalanced Classification Problems With Support Vector Machines
via Evolutionary Bilevel Optimization [73.17488635491262]
サポートベクトルマシン(SVM)は、バイナリ分類問題に対処する一般的な学習アルゴリズムである。
この記事では、EBCS-SVMについて紹介する。
論文 参考訳(メタデータ) (2022-04-21T16:08:44Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Understanding Hyperdimensional Computing for Parallel Single-Pass
Learning [47.82940409267635]
我々はHDCがハードウェア効率を保ちながら、最先端のHDCモデルよりも最大7.6%性能が高いことを示す。
本稿では,HDC の限界を超える新しいクラス VSA,有限群 VSA を提案する。
実験の結果, RFF法とグループVSAはともに最先端HDCモデルより最大7.6%優れていた。
論文 参考訳(メタデータ) (2022-02-10T02:38:56Z) - Learning in High-Dimensional Feature Spaces Using ANOVA-Based Fast
Matrix-Vector Multiplication [0.0]
カーネル行列は一般に密度が高く大規模である。特徴空間の次元によっては、合理的な時間における全てのエントリの計算さえも難しい課題となる。
そこで我々は,ANOVAカーネルを用いて低次元の特徴空間に基づいて複数のカーネルを構築し,行列ベクトル積を実現する高速アルゴリズムを提案する。
特徴グループ化アプローチに基づいて,カーネルリッジ回帰と事前条件付き共役勾配解法を選択する学習手法に,高速な行列ベクトル積を組み込む方法を示す。
論文 参考訳(メタデータ) (2021-11-19T10:29:39Z) - A Differential Geometry Perspective on Orthogonal Recurrent Models [56.09491978954866]
我々は微分幾何学からのツールと洞察を用いて、直交rnnの新しい視点を提供する。
直交RNNは、発散自由ベクトル場の空間における最適化と見なすことができる。
この観測に動機づけられて、ベクトル場全体の空間にまたがる新しいリカレントモデルの研究を行う。
論文 参考訳(メタデータ) (2021-02-18T19:39:22Z) - On the proliferation of support vectors in high dimensions [24.63581896788434]
サポートベクターマシン(英語: Support vector machine、SVM)は、サポートベクターと呼ばれる特定のトレーニング例を参照する、確立された分類法である。
近年の研究では、十分な高次元線形分類問題において、SVMは支持ベクトルの増大にもかかわらず、十分に一般化可能であることが示されている。
論文 参考訳(メタデータ) (2020-09-22T16:45:06Z) - MLPSVM:A new parallel support vector machine to multi-label learning [2.370531727442524]
本稿では,シングルラベル分類にも利用できるマルチラベル学習アルゴリズムを提案する。
標準サポートベクトルマシンをベースとし、元の単一決定ハイパープレーンを2つの並列決定ハイパープレーンに変更し、MLPSVM(Multi-label parallel support vector machine)と呼ぶ。
論文 参考訳(メタデータ) (2020-04-13T10:04:25Z) - A Unified Framework for Multiclass and Multilabel Support Vector
Machines [6.425654442936364]
マルチクラスおよびマルチラベルの分類問題に対処するために,SVM の簡単な拡張を提案する。
本フレームワークは, 従来のソフトマージンSVMフレームワークから, 直接反対構造で逸脱する。
その結果,マルチクラス分類問題とマルチラベル分類問題の両方に対する競合型分類器が示された。
論文 参考訳(メタデータ) (2020-03-25T03:08:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。