論文の概要: Learning in High-Dimensional Feature Spaces Using ANOVA-Based Fast
Matrix-Vector Multiplication
- arxiv url: http://arxiv.org/abs/2111.10140v1
- Date: Fri, 19 Nov 2021 10:29:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-22 15:56:32.797681
- Title: Learning in High-Dimensional Feature Spaces Using ANOVA-Based Fast
Matrix-Vector Multiplication
- Title(参考訳): ANOVAに基づく高速行列ベクトル乗算による高次元特徴空間の学習
- Authors: Franziska Nestler, Martin Stoll and Theresa Wagner
- Abstract要約: カーネル行列は一般に密度が高く大規模である。特徴空間の次元によっては、合理的な時間における全てのエントリの計算さえも難しい課題となる。
そこで我々は,ANOVAカーネルを用いて低次元の特徴空間に基づいて複数のカーネルを構築し,行列ベクトル積を実現する高速アルゴリズムを提案する。
特徴グループ化アプローチに基づいて,カーネルリッジ回帰と事前条件付き共役勾配解法を選択する学習手法に,高速な行列ベクトル積を組み込む方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kernel matrices are crucial in many learning tasks such as support vector
machines or kernel ridge regression. The kernel matrix is typically dense and
large-scale. Depending on the dimension of the feature space even the
computation of all of its entries in reasonable time becomes a challenging
task. For such dense matrices the cost of a matrix-vector product scales
quadratically in the number of entries, if no customized methods are applied.
We propose the use of an ANOVA kernel, where we construct several kernels based
on lower-dimensional feature spaces for which we provide fast algorithms
realizing the matrix-vector products. We employ the non-equispaced fast Fourier
transform (NFFT), which is of linear complexity for fixed accuracy. Based on a
feature grouping approach, we then show how the fast matrix-vector products can
be embedded into a learning method choosing kernel ridge regression and the
preconditioned conjugate gradient solver. We illustrate the performance of our
approach on several data sets.
- Abstract(参考訳): カーネル行列はサポートベクターマシンやカーネルリッジ回帰のような多くの学習タスクにおいて不可欠である。
カーネルマトリックスは通常密度が高く、大規模である。
特徴空間の次元によっては、合理的な時間における全てのエントリの計算でさえ難しい課題となる。
このような密行列に対して、行列ベクトル積のコストは、カスタマイズされた方法が適用されない場合、エントリ数で二乗的にスケールする。
そこで我々は,ANOVAカーネルを用いて低次元の特徴空間に基づいて複数のカーネルを構築し,行列ベクトル積を実現する高速アルゴリズムを提案する。
非等空間高速フーリエ変換 (non-equispaced fast fourier transform, nfft) を用いる。
特徴グループ化アプローチに基づいて,カーネルリッジ回帰と事前条件付き共役勾配解法を選択する学習手法に,高速な行列ベクトル積を組み込む方法を示す。
いくつかのデータセット上で,本手法の性能について述べる。
関連論文リスト
- Fast Evaluation of Additive Kernels: Feature Arrangement, Fourier Methods, and Kernel Derivatives [0.5735035463793009]
厳密な誤り解析を伴う非等間隔高速フーリエ変換(NFFT)に基づく手法を提案する。
また,本手法は,カーネルの分化に伴う行列の近似に適していることを示す。
複数のデータセット上で高速な行列ベクトル積を持つ付加的カーネルスキームの性能について述べる。
論文 参考訳(メタデータ) (2024-04-26T11:50:16Z) - Snacks: a fast large-scale kernel SVM solver [0.8602553195689513]
SnacksはKernel Support Vector Machines用の新しい大規模ソルバである。
スナックは、カーネル行列の「Nystr」近似と、下次法の加速変種に依存している。
論文 参考訳(メタデータ) (2023-04-17T04:19:20Z) - Multiresolution kernel matrix algebra [0.0]
本研究では, あるS形式において, 最適スパース行列を生成するサンプルレットを用いて, カーネル行列の圧縮を示す。
カーネル行列の逆数(もし存在するなら)は S-形式でも圧縮可能である。
行列代数は擬微分計算によって数学的に正当化される。
論文 参考訳(メタデータ) (2022-11-21T17:50:22Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Leverage Score Sampling for Tensor Product Matrices in Input Sparsity
Time [54.65688986250061]
我々は,$q$-foldカラムワイドテンソル積の$q$行列に対応するグラム行列を近似するための入力空間時間サンプリングアルゴリズムを提案する。
我々のサンプリング技術は、合計時間でデータセット$X$に同時に適用できる$q$部分相関ランダムプロジェクションのコレクションに依存している。
論文 参考訳(メタデータ) (2022-02-09T15:26:03Z) - Robust 1-bit Compressive Sensing with Partial Gaussian Circulant
Matrices and Generative Priors [54.936314353063494]
我々は,ロバストな1ビット圧縮センシングのための相関に基づく最適化アルゴリズムのリカバリ保証を提供する。
我々は,実用的な反復アルゴリズムを用いて,画像データセットの数値実験を行い,結果の相関付けを行う。
論文 参考訳(メタデータ) (2021-08-08T05:28:06Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
非PSDおよび2乗根行列の次元削減法を提案する。
複数のダウンストリームタスクにこれらのテクニックをどのように使用できるかを示す。
論文 参考訳(メタデータ) (2021-06-16T04:07:48Z) - The Fast Kernel Transform [21.001203328543006]
本稿では,FKT(Fast Kernel Transform:高速カーネル変換)を提案する。
FKT はガウス、マテルン、ラショナル四次共分散関数や物理的に動機付けられたグリーン関数など、幅広い種類のカーネルに容易に適用できる。
本稿では、時間と精度のベンチマークを提供することによりFKTの有効性と汎用性を説明し、それを近隣埋め込み(t-SNE)とガウス過程を大規模実世界のデータセットに拡張する。
論文 参考訳(メタデータ) (2021-06-08T16:15:47Z) - Fast and Accurate Pseudoinverse with Sparse Matrix Reordering and
Incremental Approach [4.710916891482697]
擬逆は行列逆の一般化であり、機械学習で広く利用されている。
FastPIはスパース行列に対する新たなインクリメンタル特異値分解法(SVD)である。
我々は,FastPIが精度を損なうことなく,他の近似手法よりも高速に擬似逆計算を行うことを示す。
論文 参考訳(メタデータ) (2020-11-09T07:47:10Z) - Linear-Sample Learning of Low-Rank Distributions [56.59844655107251]
ktimes k$, rank-r$, matrices to normalized $L_1$ distance requires $Omega(frackrepsilon2)$ sample。
我々は、$cal O(frackrepsilon2log2fracepsilon)$ sample, a number linear in the high dimension, and almost linear in the matrices, usually low, rank proofs.というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-30T19:10:32Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。