論文の概要: Redefining Safety for Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2404.16768v3
- Date: Tue, 28 May 2024 12:50:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 00:39:49.556388
- Title: Redefining Safety for Autonomous Vehicles
- Title(参考訳): 自動運転車の安全性の見直し
- Authors: Philip Koopman, William Widen,
- Abstract要約: コンピュータベースのシステムの安全性に関する既存の定義と関連する概念的枠組みを再考する必要がある。
人間の運転者なしでの運転は、安全上の懸念を劇的に増大させる。
コアシステムの安全性に関する概念を更新する。
- 参考スコア(独自算出の注目度): 0.9208007322096532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing definitions and associated conceptual frameworks for computer-based system safety should be revisited in light of real-world experiences from deploying autonomous vehicles. Current terminology used by industry safety standards emphasizes mitigation of risk from specifically identified hazards, and carries assumptions based on human-supervised vehicle operation. Operation without a human driver dramatically increases the scope of safety concerns, especially due to operation in an open world environment, a requirement to self-enforce operational limits, participation in an ad hoc sociotechnical system of systems, and a requirement to conform to both legal and ethical constraints. Existing standards and terminology only partially address these new challenges. We propose updated definitions for core system safety concepts that encompass these additional considerations as a starting point for evolving safe-ty approaches to address these additional safety challenges. These results might additionally inform framing safety terminology for other autonomous system applications.
- Abstract(参考訳): コンピュータベースのシステムの安全性に関する既存の定義と関連する概念的枠組みは、自動運転車の展開から現実の体験に照らして再考されるべきである。
業界安全基準で現在使用されている用語は、特定されたハザードからのリスクの軽減を強調し、人間の監督された車両操作に基づく仮定を実行している。
人間の運転者なしでの運転は、特にオープンワールド環境での運転、運用制限を自己強化する要件、アドホックな社会技術システムへの参加、法的および倫理的制約の両方に準拠する要件により、安全上の問題の範囲を劇的に拡大する。
既存の標準と用語は、これらの新しい課題に部分的に対処するだけである。
我々は、これらの新たな安全課題に対処するための安全なアプローチを進化させる出発点として、これらの追加考慮を含むコアシステム安全概念の更新定義を提案する。
これらの結果は、他の自律システムアプリケーションに対するフレーミング安全用語を通知する可能性がある。
関連論文リスト
- Cross-Modality Safety Alignment [73.8765529028288]
我々は、モダリティ間の安全アライメントを評価するために、セーフインプットとアンセーフアウトプット(SIUO)と呼ばれる新しい安全アライメントの課題を導入する。
この問題を実証的に調査するため,我々はSIUOを作成した。SIUOは,自己修復,違法行為,プライバシー侵害など,9つの重要な安全領域を含むクロスモダリティベンチマークである。
以上の結果から, クローズドおよびオープンソース両方のLVLMの安全性上の重大な脆弱性が明らかとなり, 複雑で現実的なシナリオを確実に解釈し, 応答する上で, 現行モデルが不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T16:14:15Z) - Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
シールドディング」は、強化学習(RL)の安全性を強制する一般的な手法である
安全と遮蔽構造に対処する新しい許容性に基づく枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T18:00:21Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Deep Learning Safety Concerns in Automated Driving Perception [43.026485214492105]
本稿では、クロスファンクショナルなチームが共同で関心事に対処できるようにするとともに、理解を深めるための追加の分類を紹介します。
近年のディープラーニング分野の進歩と認識のためのディープニューラルネットワーク(DNN)の性能向上により、自動走行(AD)システムへの需要が高まっている。
論文 参考訳(メタデータ) (2023-09-07T15:25:47Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Sustainable Adaptive Security [11.574868434725117]
本稿では,新たに発見された脅威を軽減し,適応型セキュリティシステムの拡張による永続的保護を反映したサステナブル・アダプティブ・セキュリティ(SAS)の概念を提案する。
私たちはスマートホームの例を使って、持続可能な適応セキュリティを満たすシステムのMAPE(Monitor, Analysis, Planning, Execution)ループのアクティビティをどのように構築できるかを示します。
論文 参考訳(メタデータ) (2023-06-05T08:48:36Z) - Foveate, Attribute, and Rationalize: Towards Physically Safe and
Trustworthy AI [76.28956947107372]
包括的不安全テキストは、日常的なシナリオから生じる可能性のある特定の関心領域であり、有害なテキストを検出するのが困難である。
安全の文脈において、信頼に値する合理的な生成のために外部知識を活用する新しいフレームワークであるFARMを提案する。
実験の結果,FARMはSafeTextデータセットの最先端結果を得ることができ,安全性の分類精度が5.9%向上したことがわかった。
論文 参考訳(メタデータ) (2022-12-19T17:51:47Z) - Safe Perception -- A Hierarchical Monitor Approach [0.0]
本稿では,AIに基づく認識システムのための新しい階層的モニタリング手法を提案する。
検出ミスを確実に検出でき、同時に誤報率も極めて低い。
論文 参考訳(メタデータ) (2022-08-01T13:09:24Z) - System Safety and Artificial Intelligence [0.0]
社会的領域にまたがるAIの新たな応用には、新たなハザードが伴う。
システム安全の分野は、安全クリティカルシステムにおける事故や危害に対処してきた。
この章はシステムの安全性の先駆者であるナンシー・リーブソンに敬意を表しています。
論文 参考訳(メタデータ) (2022-02-18T16:37:54Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Regulating Safety and Security in Autonomous Robotic Systems [0.0]
自律システムの規則は、しばしば定式化するのが困難である。
宇宙や原子力分野では、アプリケーションはより異なる傾向にあるため、一般的な安全原則が開発されている。
これにより、新しいアプリケーションが安全のために評価されるが、形式化することは困難である。
我々は、自律・ロボットシステムのガイドラインを開発するために、規制当局や宇宙・原子力分野のコミュニティと協力しています。
論文 参考訳(メタデータ) (2020-07-09T16:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。