論文の概要: A Disease Labeler for Chinese Chest X-Ray Report Generation
- arxiv url: http://arxiv.org/abs/2404.16852v1
- Date: Mon, 18 Mar 2024 07:10:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 11:39:16.546806
- Title: A Disease Labeler for Chinese Chest X-Ray Report Generation
- Title(参考訳): 中国の胸部X線診断用病原体
- Authors: Mengwei Wang, Ruixin Yan, Zeyi Hou, Ning Lang, Xiuzhuang Zhou,
- Abstract要約: 中国の胸部X線レポートデータセットの不足は、中国の胸部X線レポートを生成する技術の開発を妨げている。
本研究は,中国の胸部X線レポート作成に適した疾患ラベル作成手法を提案する。
- 参考スコア(独自算出の注目度): 3.3528120666497414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of medical image analysis, the scarcity of Chinese chest X-ray report datasets has hindered the development of technology for generating Chinese chest X-ray reports. On one hand, the construction of a Chinese chest X-ray report dataset is limited by the time-consuming and costly process of accurate expert disease annotation. On the other hand, a single natural language generation metric is commonly used to evaluate the similarity between generated and ground-truth reports, while the clinical accuracy and effectiveness of the generated reports rely on an accurate disease labeler (classifier). To address the issues, this study proposes a disease labeler tailored for the generation of Chinese chest X-ray reports. This labeler leverages a dual BERT architecture to handle diagnostic reports and clinical information separately and constructs a hierarchical label learning algorithm based on the affiliation between diseases and body parts to enhance text classification performance. Utilizing this disease labeler, a Chinese chest X-ray report dataset comprising 51,262 report samples was established. Finally, experiments and analyses were conducted on a subset of expert-annotated Chinese chest X-ray reports, validating the effectiveness of the proposed disease labeler.
- Abstract(参考訳): 医療画像解析の分野では、中国の胸部X線レポートデータセットの不足により、中国の胸部X線レポートを生成する技術の開発が妨げられている。
一方、中国の胸部X線レポートデータセットの構築は、正確な専門的疾患診断の時間的・費用的なプロセスによって制限される。
一方, 1つの自然言語生成指標を用いて, 生成した報告と基盤真実の類似性を評価するのが一般的であるが, 生成した報告の臨床的精度と有効性は, 正確な疾患ラベル(分類器)に依存している。
本研究は,中国の胸部X線レポート作成に適した疾患ラベル作成手法を提案する。
診断報告と臨床情報を別々に扱うためにデュアルBERTアーキテクチャを活用し、疾患と身体部分の関連性に基づく階層的なラベル学習アルゴリズムを構築し、テキスト分類性能を向上させる。
この疾患ラベルを用いて, 51,262検体からなる中国の胸部X線レポートデータセットを構築した。
最後に、専門家が注釈した中国の胸部X線レポートのサブセットについて実験と分析を行い、提案した疾患ラベル装置の有効性を検証した。
関連論文リスト
- RaTEScore: A Metric for Radiology Report Generation [59.37561810438641]
本稿では,Radiological Report (Text) Evaluation (RaTEScore) として,新しい実体認識尺度を提案する。
RaTEScoreは、診断結果や解剖学的詳細などの重要な医療機関を強調し、複雑な医学的同義語に対して堅牢であり、否定表現に敏感である。
我々の評価は、RaTEScoreが既存の指標よりも人間の嗜好とより密接に一致していることを示し、確立された公開ベンチマークと、新たに提案したRaTE-Evalベンチマークの両方で検証した。
論文 参考訳(メタデータ) (2024-06-24T17:49:28Z) - Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
胸部X線レポート生成のための新しい方法である textbfStructural textbfEntities 抽出法と textbfIncorporation (SEI) を考案した。
我々は、レポートにおけるプレゼンテーションスタイルの語彙を排除するために、構造エンティティ抽出(SEE)アプローチを採用する。
我々は,X線画像,類似の歴史的症例,患者固有の指標からの情報を統合するクロスモーダル融合ネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-23T01:29:47Z) - Consensus, dissensus and synergy between clinicians and specialist
foundation models in radiology report generation [32.26270073540666]
世界中の放射線技師の不足は専門家のケアへのアクセスを制限し、重労働を課している。
視覚言語モデルを用いた自動レポート生成の最近の進歩は、状況を改善するための明確な可能性を示唆している。
我々は、胸部X線写真のための最新のレポート生成システム、textitFlamingo-CXRを構築し、放射線学データに基づくよく知られた視覚言語基盤モデルを微調整する。
論文 参考訳(メタデータ) (2023-11-30T05:38:34Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - Computer-aided Tuberculosis Diagnosis with Attribute Reasoning
Assistance [58.01014026139231]
新しい大規模結核(TB)胸部X線データセット(TBX-Att)を提案する。
属性情報を利用してTBの分類とローカライズを行うための属性支援弱教師付きフレームワークを構築した。
提案モデルはTBX-Attデータセットで評価され,今後の研究の確かなベースラインとして機能する。
論文 参考訳(メタデータ) (2022-07-01T07:50:35Z) - FlexR: Few-shot Classification with Language Embeddings for Structured
Reporting of Chest X-rays [37.15474283789249]
構造化された報告テンプレートにおける文によって定義される臨床所見を予測する手法を提案する。
この手法は、胸部X線と関連する自由テキストラジオグラフィーレポートを用いて、対照的な言語画像モデルを訓練することを含む。
その結果, 訓練用画像レベルのアノテーションが限られている場合でも, 胸部X線における重症度評価の構造化された報告タスクを達成できることが示唆された。
論文 参考訳(メタデータ) (2022-03-29T16:31:39Z) - Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation [3.3978173451092437]
放射線画像から記述テキストを自動的に生成することを目的とした放射線学レポート生成。
典型的な設定は、エンコーダとデコーダのモデルを、クロスエントロピー損失のあるイメージレポートペアでトレーニングする。
本稿では,医療報告生成におけるコントラスト損失の弱化について提案する。
論文 参考訳(メタデータ) (2021-09-25T00:06:23Z) - Medical-VLBERT: Medical Visual Language BERT for COVID-19 CT Report
Generation With Alternate Learning [70.71564065885542]
本稿では,医療用ビジュアル言語BERT(Medical-VLBERT)モデルを用いて,新型コロナウイルススキャンの異常を同定する。
このモデルは、知識事前学習と伝達の2つの手順で、代替的な学習戦略を採用する。
COVID-19患者に対する医療報告の自動作成のために,中国語で368例,胸部CTで1104例の検診を行った。
論文 参考訳(メタデータ) (2021-08-11T07:12:57Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
医療画像のレポート生成は、作業負荷を減らし、臨床実習における診断を支援することを約束する。
近年の研究では、ディープラーニングモデルが自然画像のキャプションに成功していることが示された。
本稿では,自動レポート生成のための変分トピック推論を提案する。
論文 参考訳(メタデータ) (2021-07-15T13:34:38Z) - Chest X-ray Report Generation through Fine-Grained Label Learning [46.352966049776875]
画像から詳細な所見を学習する領域認識自動胸部X線診断レポート生成アルゴリズムを提案する。
また、画像にそのような記述子を割り当てる自動ラベリングアルゴリズムを開発し、発見の粗い記述ときめ細かい記述の両方を認識する新しいディープラーニングネットワークを構築した。
論文 参考訳(メタデータ) (2020-07-27T19:50:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。