論文の概要: Identifying Sub-networks in Neural Networks via Functionally Similar Representations
- arxiv url: http://arxiv.org/abs/2410.16484v1
- Date: Mon, 21 Oct 2024 20:19:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:28:15.135672
- Title: Identifying Sub-networks in Neural Networks via Functionally Similar Representations
- Title(参考訳): 機能的類似表現を用いたニューラルネットワークにおけるサブネットワークの同定
- Authors: Tian Gao, Amit Dhurandhar, Karthikeyan Natesan Ramamurthy, Dennis Wei,
- Abstract要約: 我々は、異なるサブネットワークの存在を調査し、ネットワークの理解を自動化するための一歩を踏み出した。
我々のアプローチは、人間と計算コストを最小限に抑えたニューラルネットワークの振る舞いに関する有意義な洞察を提供する。
- 参考スコア(独自算出の注目度): 41.028797971427124
- License:
- Abstract: Mechanistic interpretability aims to provide human-understandable insights into the inner workings of neural network models by examining their internals. Existing approaches typically require significant manual effort and prior knowledge, with strategies tailored to specific tasks. In this work, we take a step toward automating the understanding of the network by investigating the existence of distinct sub-networks. Specifically, we explore a novel automated and task-agnostic approach based on the notion of functionally similar representations within neural networks, reducing the need for human intervention. Our method identifies similar and dissimilar layers in the network, revealing potential sub-components. We achieve this by proposing, for the first time to our knowledge, the use of Gromov-Wasserstein distance, which overcomes challenges posed by varying distributions and dimensionalities across intermediate representations, issues that complicate direct layer-to-layer comparisons. Through experiments on algebraic and language tasks, we observe the emergence of sub-groups within neural network layers corresponding to functional abstractions. Additionally, we find that different training strategies influence the positioning of these sub-groups. Our approach offers meaningful insights into the behavior of neural networks with minimal human and computational cost.
- Abstract(参考訳): 機械的解釈可能性(Mechanistic Interpretability)は、ニューラルネットワークモデルの内部動作に対する人間の理解可能な洞察を、内部を調べることによって提供することを目的としている。
既存のアプローチは、通常、重要な手作業と事前の知識を必要とします。
本研究では,異なるサブネットワークの存在を調査することにより,ネットワークの理解を自動化するための一歩を踏み出した。
具体的には、ニューラルネットワーク内の機能的に類似した表現の概念に基づいて、新しい自動化されたタスク非依存のアプローチを検討し、人間の介入の必要性を減らす。
提案手法は,ネットワーク内の類似層と異種層を同定し,潜在的サブコンポーネントを明らかにする。
これは、中間表現間の分布や次元の変化によって生じる課題を克服し、直接層間比較を複雑化する問題である。
代数的および言語的タスクの実験を通じて、機能的抽象化に対応するニューラルネットワーク層内のサブグループの出現を観察する。
さらに、これらのサブグループの配置に異なるトレーニング戦略が影響していることがわかりました。
我々のアプローチは、人間と計算コストを最小限に抑えたニューラルネットワークの振る舞いに関する有意義な洞察を提供する。
関連論文リスト
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
本稿では, チャンキングの原理を応用して, 人工神経集団活動の解釈を提案する。
まず、この概念を正則性を持つ人工シーケンスを訓練したリカレントニューラルネットワーク(RNN)で実証する。
我々は、これらの状態に対する摂動が関連する概念を活性化または阻害すると共に、入力における概念に対応する同様の繰り返し埋め込み状態を特定する。
論文 参考訳(メタデータ) (2025-02-03T20:30:46Z) - Aligning Knowledge Graphs Provided by Humans and Generated from Neural Networks in Specific Tasks [5.791414814676125]
本稿では,ニューラルネットワークによる知識グラフの生成と活用を可能にする革新的な手法を提案する。
われわれのアプローチは、従来の単語の埋め込みモデルへの依存を排除し、ニューラルネットワークから概念をマイニングし、それらを人間の知識と直接整合させる。
実験により,本手法は人間の知識と密接に一致したネットワーク生成概念を連続的に捕捉し,これまでヒトが認識していなかった新しい有用な概念を発見できることがわかった。
論文 参考訳(メタデータ) (2024-04-23T20:33:17Z) - Finding Concept Representations in Neural Networks with Self-Organizing
Maps [2.817412580574242]
ニューラルネットワークの層活性化が抽象概念の神経表現にどのように対応するかを調べるために,自己組織化マップをどのように利用できるかを示す。
実験の結果, 概念の活性化マップの相対エントロピーは適切な候補であり, 概念の神経表現を同定し, 特定するための方法論として利用できることがわかった。
論文 参考訳(メタデータ) (2023-12-10T12:10:34Z) - DISCOVER: Making Vision Networks Interpretable via Competition and
Dissection [11.028520416752325]
この研究は、ポストホック解釈可能性、特にネットワーク分割に寄与する。
私たちのゴールは、視覚タスクで訓練されたネットワークにおいて、各ニューロンの個々の機能を容易に発見できるフレームワークを提供することです。
論文 参考訳(メタデータ) (2023-10-07T21:57:23Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
ニューラルネットワークの特徴空間の次元性と準直交性は、ネットワークの性能差別と共同して機能する可能性があることを示す。
本研究は, ネットワークの最終的な性能と, ランダムに初期化された特徴空間の特性との関係を示唆する。
論文 参考訳(メタデータ) (2022-03-30T21:47:32Z) - Interpretable part-whole hierarchies and conceptual-semantic
relationships in neural networks [4.153804257347222]
本稿では、視覚的手がかりから部分全体階層を表現できるフレームワークであるAgglomeratorについて述べる。
本研究では,SmallNORB,MNIST,FashionMNIST,CIFAR-10,CIFAR-100などの共通データセットを用いて評価を行った。
論文 参考訳(メタデータ) (2022-03-07T10:56:13Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Learning Interpretable Models for Coupled Networks Under Domain
Constraints [8.308385006727702]
脳ネットワークの構造的エッジと機能的エッジの相互作用に着目して,結合ネットワークの概念を検討する。
相互作用を推定しながらノイズ項にハードネットワークの制約を課す新しい定式化を提案する。
ヒトコネクトームプロジェクトから得られたマルチシェル拡散およびタスク誘発fMRIデータセットの手法を検証する。
論文 参考訳(メタデータ) (2021-04-19T06:23:31Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。