論文の概要: Compiler for Distributed Quantum Computing: a Reinforcement Learning Approach
- arxiv url: http://arxiv.org/abs/2404.17077v1
- Date: Thu, 25 Apr 2024 23:03:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 14:24:03.756134
- Title: Compiler for Distributed Quantum Computing: a Reinforcement Learning Approach
- Title(参考訳): 分散量子コンピューティングのためのコンパイラ:強化学習アプローチ
- Authors: Panagiotis Promponas, Akrit Mudvari, Luca Della Chiesa, Paul Polakos, Louis Samuel, Leandros Tassiulas,
- Abstract要約: 本稿では,EPRペアの生成とルーティングを共同で管理することで,実行時間の短縮を優先する新しいコンパイラを提案する。
本稿では, 量子回路の絡み合い生成の性質と動作要求を考慮し, リアルタイムかつ適応的なコンパイラ設計手法を提案する。
i)マルコフ決定過程(MDP)の定式化を用いてDQCの最適コンパイラをモデル化し、最適アルゴリズムの存在を確立し、(ii)この最適コンパイラを近似するために制約付き強化学習(RL)法を導入する。
- 参考スコア(独自算出の注目度): 6.347685922582191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The practical realization of quantum programs that require large-scale qubit systems is hindered by current technological limitations. Distributed Quantum Computing (DQC) presents a viable path to scalability by interconnecting multiple Quantum Processing Units (QPUs) through quantum links, facilitating the distributed execution of quantum circuits. In DQC, EPR pairs are generated and shared between distant QPUs, which enables quantum teleportation and facilitates the seamless execution of circuits. A primary obstacle in DQC is the efficient mapping and routing of logical qubits to physical qubits across different QPUs, necessitating sophisticated strategies to overcome hardware constraints and optimize communication. We introduce a novel compiler that, unlike existing approaches, prioritizes reducing the expected execution time by jointly managing the generation and routing of EPR pairs, scheduling remote operations, and injecting SWAP gates to facilitate the execution of local gates. We present a real-time, adaptive approach to compiler design, accounting for the stochastic nature of entanglement generation and the operational demands of quantum circuits. Our contributions are twofold: (i) we model the optimal compiler for DQC using a Markov Decision Process (MDP) formulation, establishing the existence of an optimal algorithm, and (ii) we introduce a constrained Reinforcement Learning (RL) method to approximate this optimal compiler, tailored to the complexities of DQC environments. Our simulations demonstrate that Double Deep Q-Networks (DDQNs) are effective in learning policies that minimize the depth of the compiled circuit, leading to a lower expected execution time and likelihood of successful operation before qubits decohere.
- Abstract(参考訳): 大規模量子ビットシステムを必要とする量子プログラムの実践的実現は、現在の技術的制限によって妨げられている。
分散量子コンピューティング(DQC)は、量子リンクを介して複数の量子処理ユニット(QPU)を相互接続し、量子回路の分散実行を容易にすることにより、スケーラビリティへの実行可能なパスを提供する。
DQCでは、EPRペアが生成され、遠隔QPU間で共有され、量子テレポーテーションを可能にし、回路のシームレスな実行を容易にする。
DQCの主な障害は、ハードウェアの制約を克服し、通信を最適化するために洗練された戦略を必要とする、様々なQPUにわたる論理量子ビットから物理量子ビットへの効率的なマッピングとルーティングである。
既存の手法とは異なり、EPRペアの生成とルーティングを共同で管理し、リモート操作をスケジューリングし、ローカルゲートの実行を容易にするSWAPゲートを注入することで、実行時間の短縮を優先する新しいコンパイラを導入する。
本稿では, 量子回路の絡み合い生成の確率的性質と動作要求を考慮した, リアルタイムかつ適応的なコンパイラ設計手法を提案する。
私たちの貢献は2つあります。
i)マルコフ決定過程(MDP)の定式化を用いてDQCの最適コンパイラをモデル化し、最適アルゴリズムの存在を確定する。
(II) DQC環境の複雑さに合わせて, この最適コンパイラを近似する制約付き強化学習法(RL)を導入する。
シミュレーションにより、Double Deep Q-Networks (DDQNs) は、コンパイルされた回路の深さを最小化する学習ポリシーに有効であることを示す。
関連論文リスト
- ECDQC: Efficient Compilation for Distributed Quantum Computing with Linear Layout [6.382954852270525]
本稿では,LNNアーキテクチャを用いた分散量子コンピューティング(DQC)の効率的なコンパイル手法を提案する。
提案手法は, コンパイル時間, ゲート数, 回路深さを著しく低減し, 大規模量子計算の堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-10-31T12:07:46Z) - Resource Management and Circuit Scheduling for Distributed Quantum Computing Interconnect Networks [4.0985912998349345]
分散量子コンピューティング(DQC)は、モノリシック量子プロセッサのスケーラビリティ制限を克服するための有望なアプローチとして登場した。
本稿では,このようなネットワークにおける資源割り当ての問題に対処し,量子ファーム環境における資源管理に焦点をあてる。
本稿では,QPU間通信遅延による劣化の最小化を目的とした,QPU割り当てのための多目的最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-19T11:39:46Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Attention-Based Deep Reinforcement Learning for Qubit Allocation in Modular Quantum Architectures [1.8781124875646162]
この研究は、効率的な量子回路のコンパイルとマッピングのための新しい学習ベースのアプローチを導入することにより、スケーラブルな量子コンピューティングシステムの進歩に寄与する。
本研究では,Deep Reinforcement Learning (DRL) 手法を応用して,特定のマルチコアアーキテクチャのための学習手法を提案する。
論文 参考訳(メタデータ) (2024-06-17T12:09:11Z) - A Genetic Approach to Minimising Gate and Qubit Teleportations for Multi-Processor Quantum Circuit Distribution [6.207327488572861]
分散量子コンピューティング(DQC)は、複数の量子プロセッサユニット(QPU)を相互接続することで利用可能な量子計算をスケールする手段を提供する。
この領域における鍵となる課題は、量子回路からQPU内の物理量子ビットへ論理量子ビットを効率的に割り当てることである。
従来のアプローチでは、ゲートテレポーテーションの一種である非ローカルなCNOT操作の実行に必要なベルペアの数を減らそうとしていた。
本稿では,量子回路を実行するネットワークコストを最小化するメタヒューリスティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-09T16:03:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
量子クラウドコンピューティング(QCC)は、量子コンピューティングリソースを効率的に提供するための有望なアプローチを提供する。
ユーザ需要の変動と量子回路の要求は、効率的なリソース供給のために困難である。
本稿では、量子コンピューティングとネットワークリソースのプロビジョニングのためのリソース割り当てモデルを提案する。
論文 参考訳(メタデータ) (2023-07-25T00:38:46Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Supervised Learning Enhanced Quantum Circuit Transformation [6.72166630054365]
実量子処理ユニット(QPU)における量子プログラムの実行には、量子回路変換(QCT)が必要である。
本稿では,浅層回路上の教師あり学習によって訓練されたポリシ人工知能ニューラルネットワーク(ANN)を用いて,既存のQCTアルゴリズムが最も有望なSWAPゲートを選択するのを支援するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-06T20:32:28Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。