Pose-Specific 3D Fingerprint Unfolding
- URL: http://arxiv.org/abs/2404.17149v1
- Date: Fri, 26 Apr 2024 04:44:23 GMT
- Title: Pose-Specific 3D Fingerprint Unfolding
- Authors: Xiongjun Guan, Jianjiang Feng, Jie Zhou,
- Abstract summary: In order to make 3D fingerprints compatible with traditional 2D flat fingerprints, a common practice is to unfold the 3D fingerprint into a 2D rolled fingerprint.
The problem with this method is that there may be large elastic deformation between the unfolded rolled fingerprint and flat fingerprint.
We propose a pose-specific 3D fingerprint unfolding algorithm to unfold the 3D fingerprint using the same pose as the flat fingerprint.
- Score: 34.16169623776737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to make 3D fingerprints compatible with traditional 2D flat fingerprints, a common practice is to unfold the 3D fingerprint into a 2D rolled fingerprint, which is then matched with the flat fingerprints by traditional 2D fingerprint recognition algorithms. The problem with this method is that there may be large elastic deformation between the unfolded rolled fingerprint and flat fingerprint, which affects the recognition rate. In this paper, we propose a pose-specific 3D fingerprint unfolding algorithm to unfold the 3D fingerprint using the same pose as the flat fingerprint. Our experiments show that the proposed unfolding algorithm improves the compatibility between 3D fingerprint and flat fingerprint and thus leads to higher genuine matching scores.
Related papers
- Contactless Fingerprint Recognition Using 3D Graph Matching [12.092701535950097]
Most existing contactless fingerprint algorithms treat contactless fingerprints as 2D plain fingerprints.
This recognition approach does not consider the modality difference between contactless and contact fingerprints.
This paper proposes a novel contactless fingerprint recognition algorithm that captures the revealed 3D feature of contactless fingerprints.
arXiv Detail & Related papers (2024-09-13T12:39:57Z) - Fixed-length Dense Descriptor for Efficient Fingerprint Matching [33.808749518785]
We propose a three-dimensional representation called Fixed-length Dense Descriptor (FDD) for efficient fingerprint matching.
FDD features great spatial properties, enabling it to capture the spatial relationships of the original fingerprints.
Our experiments on various fingerprint datasets reveal that FDD outperforms other fixed-length descriptors.
arXiv Detail & Related papers (2023-11-30T14:15:39Z) - A Universal Latent Fingerprint Enhancer Using Transformers [47.87570819350573]
This study aims to develop a fast method, which we call ULPrint, to enhance various latent fingerprint types.
In closed-set identification accuracy experiments, the enhanced image was able to improve the performance of the MSU-AFIS from 61.56% to 75.19%.
arXiv Detail & Related papers (2023-05-31T23:01:11Z) - FIGO: Enhanced Fingerprint Identification Approach Using GAN and One
Shot Learning Techniques [0.0]
We propose a Fingerprint Identification approach based on Generative adversarial network and One-shot learning techniques.
First, we propose a Pix2Pix model to transform low-quality fingerprint images to a higher level of fingerprint images pixel by pixel directly in the fingerprint enhancement tier.
Second, we construct a fully automated fingerprint feature extraction model using a one-shot learning approach to differentiate each fingerprint from the others in the fingerprint identification process.
arXiv Detail & Related papers (2022-08-11T02:45:42Z) - A review of schemes for fingerprint image quality computation [66.32254395574994]
This paper reviews existing approaches for fingerprint image quality computation.
We also implement, test and compare a selection of them using the MCYT database including 9000 fingerprint images.
arXiv Detail & Related papers (2022-07-12T10:34:03Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
A medium-size fake fingerprint database is described and two different fingerprint verification systems are evaluated on it.
Results for an optical and a thermal sweeping sensors are given.
arXiv Detail & Related papers (2022-07-11T12:22:52Z) - FingerGAN: A Constrained Fingerprint Generation Scheme for Latent
Fingerprint Enhancement [23.67808389519383]
We propose a new method that formulates the latent fingerprint enhancement as a constrained fingerprint generation problem.
Experimental results on two public latent fingerprint databases demonstrate that our method outperforms the state of the arts significantly.
arXiv Detail & Related papers (2022-06-26T14:05:21Z) - Monocular 3D Fingerprint Reconstruction and Unwarping [36.50244665233824]
We propose a learning based shape from texture algorithm to reconstruct a 3D finger shape from a single image and unwarp the raw image to suppress perspective distortion.
Experimental results on contactless fingerprint databases show that the proposed method has high 3D reconstruction accuracy.
arXiv Detail & Related papers (2022-05-02T15:09:05Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae.
We propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints.
The proposed method achieves the state-of-the-art registration performance, especially under challenging conditions.
arXiv Detail & Related papers (2020-05-12T15:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.