Contactless Fingerprint Recognition Using 3D Graph Matching
- URL: http://arxiv.org/abs/2409.08782v1
- Date: Fri, 13 Sep 2024 12:39:57 GMT
- Title: Contactless Fingerprint Recognition Using 3D Graph Matching
- Authors: Zhe Cui, Yuwei Jia, Siyang Zheng, Fei Su,
- Abstract summary: Most existing contactless fingerprint algorithms treat contactless fingerprints as 2D plain fingerprints.
This recognition approach does not consider the modality difference between contactless and contact fingerprints.
This paper proposes a novel contactless fingerprint recognition algorithm that captures the revealed 3D feature of contactless fingerprints.
- Score: 12.092701535950097
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Contactless fingerprint is a newly developed type of fingerprint, and has gained lots of attention in recent fingerprint studies. However, most existing contactless fingerprint algorithms treat contactless fingerprints as 2D plain fingerprints, and utilize similar recognition methods as traditional contact-based 2D fingerprints. This recognition approach does not consider the modality difference between contactless and contact fingerprints, especially the intrinsic 3D characteristic of contactless fingerprints. This paper proposes a novel contactless fingerprint recognition algorithm that captures the revealed 3D feature of contactless fingerprints rather than the plain 2D feature. The proposed method first recovers 3D features from the input contactless fingerprint, including the 3D shape model and 3D fingerprint feature (minutiae, orientation, etc.). Then, a novel 3D graph matching is conducted in 3D space according to the extracted 3D feature. Our method captures the real 3D nature of contactless fingerprints as the whole feature extraction and matching algorithms are completed in real 3D space. Experiments results on contactless fingerprint databases show that the proposed method successfully improves the matching accuracy of contactless fingerprints. Exceptionally, our method performs stably across multiple poses of contactless fingerprints due to 3D graph matching, which is a great advantage compared to previous contactless fingerprint recognition algorithms.
Related papers
- Pose-Specific 3D Fingerprint Unfolding [34.16169623776737]
In order to make 3D fingerprints compatible with traditional 2D flat fingerprints, a common practice is to unfold the 3D fingerprint into a 2D rolled fingerprint.
The problem with this method is that there may be large elastic deformation between the unfolded rolled fingerprint and flat fingerprint.
We propose a pose-specific 3D fingerprint unfolding algorithm to unfold the 3D fingerprint using the same pose as the flat fingerprint.
arXiv Detail & Related papers (2024-04-26T04:44:23Z) - Deep Learning-Based Approaches for Contactless Fingerprints Segmentation
and Extraction [1.2441902898414798]
We develop a deep learning-based segmentation tool for contactless fingerprint localization and segmentation.
In our evaluation, our segmentation method demonstrated an average mean absolute error (MAE) of 30 pixels, an error in angle prediction (EAP) of 5.92 degrees, and a labeling accuracy of 97.46%.
arXiv Detail & Related papers (2023-11-26T01:56:10Z) - RFDforFin: Robust Deep Forgery Detection for GAN-generated Fingerprint
Images [45.73061833269094]
We propose the first deep forgery detection approach for fingerprint images, which combines unique ridge features of fingerprint and generation artifacts of the GAN-generated images.
Our proposed approach is effective and robust with low complexities.
arXiv Detail & Related papers (2023-08-18T04:05:18Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
arXiv Detail & Related papers (2023-01-07T20:55:16Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
fingerprint leakage from social media raises a strong desire for anonymizing shared images.
To guard the fingerprint leakage, adversarial attack emerges as a solution by adding imperceptible perturbations on images.
We propose FingerSafe, a hierarchical perceptual protective noise injection framework to address the mentioned problems.
arXiv Detail & Related papers (2022-08-23T02:20:46Z) - FIGO: Enhanced Fingerprint Identification Approach Using GAN and One
Shot Learning Techniques [0.0]
We propose a Fingerprint Identification approach based on Generative adversarial network and One-shot learning techniques.
First, we propose a Pix2Pix model to transform low-quality fingerprint images to a higher level of fingerprint images pixel by pixel directly in the fingerprint enhancement tier.
Second, we construct a fully automated fingerprint feature extraction model using a one-shot learning approach to differentiate each fingerprint from the others in the fingerprint identification process.
arXiv Detail & Related papers (2022-08-11T02:45:42Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
A medium-size fake fingerprint database is described and two different fingerprint verification systems are evaluated on it.
Results for an optical and a thermal sweeping sensors are given.
arXiv Detail & Related papers (2022-07-11T12:22:52Z) - Monocular 3D Fingerprint Reconstruction and Unwarping [36.50244665233824]
We propose a learning based shape from texture algorithm to reconstruct a 3D finger shape from a single image and unwarp the raw image to suppress perspective distortion.
Experimental results on contactless fingerprint databases show that the proposed method has high 3D reconstruction accuracy.
arXiv Detail & Related papers (2022-05-02T15:09:05Z) - C2CL: Contact to Contactless Fingerprint Matching [38.95044919159418]
This paper presents an end-to-end automated system, called C2CL, comprised of a mobile finger photo capture app, preprocessing, and matching algorithms.
experimental results on 3 publicly available datasets demonstrate, for the first time, contact to contactless fingerprint matching accuracy that is comparable to existing contact fingerprint matching systems.
arXiv Detail & Related papers (2021-04-06T21:52:46Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae.
We propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints.
The proposed method achieves the state-of-the-art registration performance, especially under challenging conditions.
arXiv Detail & Related papers (2020-05-12T15:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.