論文の概要: Pseudo-Observations and Super Learner for the Estimation of the Restricted Mean Survival Time
- arxiv url: http://arxiv.org/abs/2404.17211v1
- Date: Fri, 26 Apr 2024 07:38:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 13:44:15.362249
- Title: Pseudo-Observations and Super Learner for the Estimation of the Restricted Mean Survival Time
- Title(参考訳): 制限付き平均生存時間推定のための擬似観測と超学習者
- Authors: Ariane Cwiling, Vittorio Perduca, Olivier Bouaziz,
- Abstract要約: 疑似観測とスーパーラーナを組み合わせた,フレキシブルで使いやすいアンサンブルアルゴリズムを提案する。
提案手法から得られた予測をRMST適応リスク尺度,予測間隔,変数重要度尺度で補完する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of right-censored data, we study the problem of predicting the restricted time to event based on a set of covariates. Under a quadratic loss, this problem is equivalent to estimating the conditional Restricted Mean Survival Time (RMST). To that aim, we propose a flexible and easy-to-use ensemble algorithm that combines pseudo-observations and super learner. The classical theoretical results of the super learner are extended to right-censored data, using a new definition of pseudo-observations, the so-called split pseudo-observations. Simulation studies indicate that the split pseudo-observations and the standard pseudo-observations are similar even for small sample sizes. The method is applied to maintenance and colon cancer datasets, showing the interest of the method in practice, as compared to other prediction methods. We complement the predictions obtained from our method with our RMST-adapted risk measure, prediction intervals and variable importance measures developed in a previous work.
- Abstract(参考訳): 右チャージデータの文脈では,一組の共変量に基づいて,制限時間からイベントまでの予測の問題について検討する。
二次的損失の下では、この問題は条件付き平均生存時間(RMST)の推定と等価である。
そこで本研究では,擬似観測とスーパーラーナを組み合わせた,フレキシブルで使いやすいアンサンブルアルゴリズムを提案する。
超学習者の古典的理論的結果は、いわゆるスプリット擬似観測という新しい定義を用いて、右チャージされたデータに拡張される。
シミュレーション研究は、小さなサンプルサイズであっても、分割された擬似観測と標準擬似観測は類似していることを示している。
本手法は、他の予測方法と比較して、実際に実施されている方法の関心を示す、維持および大腸癌データセットに適用される。
提案手法から得られた予測を, RMST適応リスク尺度, 予測間隔, 変数重要度尺度で補完する。
関連論文リスト
- Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
我々は,データポイントが任意の相関関係を持つ場合,リッジ回帰のイン・オブ・サンプルリスクのトレーニング例を提供する。
さらに、テストポイントがトレーニングセットと非自明な相関を持ち、時系列予測で頻繁に発生するような場合まで分析を拡張します。
我々は多種多様な高次元データにまたがって理論を検証する。
論文 参考訳(メタデータ) (2024-08-08T17:27:29Z) - Joint Prediction Regions for time-series models [0.0]
IIDデータの場合、JPR(Joint Prediction Region)の計算は容易である。
このプロジェクトは、JPRを構築するWolfとWunderliのメソッドを実装し、他のメソッドと比較することを目的としている。
論文 参考訳(メタデータ) (2024-05-14T02:38:49Z) - Semiparametric Efficient Inference in Adaptive Experiments [29.43493007296859]
本研究では, 治療や管理に対する課題の割り当てを規定する政策が, 時間とともに変化しうる連続的な実験において, 平均治療効果の効率的な推定の問題点を考察する。
まず、Adaptive Augmented Inverse-Probability Weighted estimator に対する中心極限定理について述べる。
次に、従来の手法よりもかなり厳密な確率性および漸近的信頼シーケンスの両方を導出した逐次推論設定を検討する。
論文 参考訳(メタデータ) (2023-11-30T06:25:06Z) - CenTime: Event-Conditional Modelling of Censoring in Survival Analysis [49.44664144472712]
CenTimeは、イベントへの時間を直接見積もる、サバイバル分析の新しいアプローチである。
本手法は,非検閲データが少ない場合でも,堅牢なイベント条件検閲機構を特徴とする。
以上の結果から,CenTimeは同等の性能を維持しつつ,死までの時間を予測する上で,最先端のパフォーマンスを提供することがわかった。
論文 参考訳(メタデータ) (2023-09-07T17:07:33Z) - Estimation Beyond Data Reweighting: Kernel Method of Moments [9.845144212844662]
モーメントのカーネル法(KMM)と呼ばれる最大平均誤差に基づく経験的確率推定器を提供する。
条件付きモーメント制限タスクにおいて,本手法が競合性能を達成することを示す。
論文 参考訳(メタデータ) (2023-05-18T11:52:43Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
分散シフトへの対処は、現代の機械学習における中心的な課題の1つだ。
歴史的情報を適切に再利用するオンライン手法を提案する。
我々の密度比推定法は, ダイナミックなリセットバウンドを楽しむことにより, 良好に動作できることが証明された。
論文 参考訳(メタデータ) (2023-02-06T04:03:33Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - Calibration of prediction rules for life-time outcomes using prognostic
Cox regression survival models and multiple imputations to account for
missing predictor data with cross-validatory assessment [0.0]
検閲対象の生存モデルにおけるインプテーションと予測キャリブレーションを組み合わせた手法について述べる。
予測平均化は、ルービンの規則の直接適用とは対照的に、優れた統計的特性、特により小さい予測的変化を有するように見える。
論文 参考訳(メタデータ) (2021-05-04T20:10:12Z) - Interpretable Machines: Constructing Valid Prediction Intervals with
Random Forests [0.0]
最近の研究で機械学習アルゴリズムを使用する場合の重要な問題は、解釈能力の欠如です。
Random Forest Regression Learnerのこのギャップへの貢献について紹介します。
いくつかのパラメトリックおよび非パラメトリック予測区間がランダムフォレスト点予測のために提供される。
モンテカルロシミュレーションによる徹底的な調査を行い,提案手法の性能を評価した。
論文 参考訳(メタデータ) (2021-03-09T23:05:55Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。