論文の概要: A Moment-Based Generalization to Post-Prediction Inference
- arxiv url: http://arxiv.org/abs/2507.09119v1
- Date: Sat, 12 Jul 2025 02:33:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:22.461531
- Title: A Moment-Based Generalization to Post-Prediction Inference
- Title(参考訳): モーメントに基づくポストプレディション推論の一般化
- Authors: Stephen Salerno, Kentaro Hoffman, Awan Afiaz, Anna Neufeld, Tyler H. McCormick, Jeffrey T. Leek,
- Abstract要約: 人工知能(AI)と機械学習(ML)は、下流の分析のためのデータを生成するためにますます利用されている。
これらの予測を真に観察すると、偏見のある結果と誤った推測につながる可能性がある。
Wangらは、AI/ML予測と観測結果の関係をモデル化して推論を校正する、予測後推論手法を提案した。
- 参考スコア(独自算出の注目度): 2.089112028396727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) and machine learning (ML) are increasingly used to generate data for downstream analyses, yet naively treating these predictions as true observations can lead to biased results and incorrect inference. Wang et al. (2020) proposed a method, post-prediction inference, which calibrates inference by modeling the relationship between AI/ML-predicted and observed outcomes in a small, gold-standard sample. Since then, several methods have been developed for inference with predicted data. We revisit Wang et al. in light of these recent developments. We reflect on their assumptions and offer a simple extension of their method which relaxes these assumptions. Our extension (1) yields unbiased point estimates under standard conditions and (2) incorporates a simple scaling factor to preserve calibration variability. In extensive simulations, we show that our method maintains nominal Type I error rates, reduces bias, and achieves proper coverage.
- Abstract(参考訳): 人工知能(AI)と機械学習(ML)は、下流の分析のためのデータを生成するためにますます使われていますが、これらの予測を真に観察すると、バイアスのある結果と誤った推論につながる可能性があります。
Wang et al (2020) は、AI/ML予測と観測結果の関係を、小さな金標準サンプルでモデル化し、推論を校正する手法であるポストプレディション推論を提案した。
それ以来、予測データを用いた推論のためのいくつかの手法が開発されている。
我々は最近の発展を踏まえて、Wangらを再考する。
我々はそれらの仮定を反映し、これらの仮定を緩和する手法の簡単な拡張を提供する。
我々の拡張(1)は、標準条件下での偏りのない点推定を行い、(2)キャリブレーションの変動性を維持するための単純なスケーリング係数を組み込む。
広範囲なシミュレーションにおいて,本手法は名目上のI型エラー率を維持し,バイアスを低減し,適切なカバレッジを実現する。
関連論文リスト
- Debiasing Machine Learning Predictions for Causal Inference Without Additional Ground Truth Data: "One Map, Many Trials" in Satellite-Driven Poverty Analysis [3.4137115855910762]
新たに収集したラベル付きデータに頼らずに予測バイアスを大幅に低減する2つの補正手法を導入・評価する。
提案手法は, (a) パイプラインのトレーニングや (b) 追加ラベル付きデータに対する調整を必要とする既存のアプローチに適合するか,あるいは性能を向上することを示した。
論文 参考訳(メタデータ) (2025-08-02T12:26:26Z) - Prediction-Powered Adaptive Shrinkage Estimation [0.9208007322096532]
予測パワー適応収縮(英: Prediction-Powered Adaptive Shrinkage、PAS)は、PPIを実証的なベイズ収縮で橋渡しし、複数の手段の推定を改善する手法である。
PASはML予測の信頼性に適応し、大規模アプリケーションにおいて従来のベースラインと現代的なベースラインを上回っている。
論文 参考訳(メタデータ) (2025-02-20T00:24:05Z) - Causal Lifting of Neural Representations: Zero-Shot Generalization for Causal Inferences [56.23412698865433]
予測型因果推論(PPCI)に焦点をあてる
PPCIは、未ラベルの事実結果を用いた対象実験における治療効果を推定し、事前訓練されたモデルからゼロショットを取得する。
バニラ実験的リスク最小化によって解決不可能なインスタンスに対するソリューションを提供するため,本手法を合成および実世界の科学的データに対して検証する。
論文 参考訳(メタデータ) (2025-02-10T10:52:17Z) - Assumption-Lean and Data-Adaptive Post-Prediction Inference [1.5050365268347254]
本稿では,ML予測データに基づく有効かつ強力な推論を可能にするPoSt-Prediction Adaptive Inference (PSPA)を提案する。
シミュレーションと実データによる手法の統計的優位性と適用性を示す。
論文 参考訳(メタデータ) (2023-11-23T22:41:30Z) - Quantifying predictive uncertainty of aphasia severity in stroke patients with sparse heteroscedastic Bayesian high-dimensional regression [47.1405366895538]
高次元データに対する疎線型回帰法は、通常、残留物が一定の分散を持つと仮定するが、これは実際には破ることができる。
本稿では,ヘテロセダスティック分割経験的ベイズ期待条件最大化アルゴリズムを用いて,高次元ヘテロセダスティック線形回帰モデルを推定する。
論文 参考訳(メタデータ) (2023-09-15T22:06:29Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
既存の特徴から予測器を学習するためのよりシンプルな手法を考案することは、将来の研究にとって有望な方向である、と我々は主張する。
本稿では,線形予測器を学習するための凸目標である領域調整回帰(DARE)を紹介する。
自然モデルの下では、DARE解が制限されたテスト分布の集合に対する最小最適予測器であることを証明する。
論文 参考訳(メタデータ) (2022-02-14T16:42:16Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
線形回帰モデルを用いて条件平均処理効果(CATE)の予測における良性過剰適合理論について検討した。
一方,IPW-learnerは確率スコアが分かっていればリスクをゼロに収束させるが,T-learnerはランダムな割り当て以外の一貫性を達成できないことを示す。
論文 参考訳(メタデータ) (2022-02-10T18:51:52Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - On Model Identification and Out-of-Sample Prediction of Principal
Component Regression: Applications to Synthetic Controls [20.96904429337912]
固定設計による高次元誤差変数設定における主成分回帰(PCR)の解析を行う。
我々は、最もよく知られたレートで改善される非漸近的なアウト・オブ・サンプル予測の保証を確立する。
論文 参考訳(メタデータ) (2020-10-27T17:07:36Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。