論文の概要: Joint Prediction Regions for time-series models
- arxiv url: http://arxiv.org/abs/2405.12234v2
- Date: Mon, 27 May 2024 13:52:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 03:18:40.860007
- Title: Joint Prediction Regions for time-series models
- Title(参考訳): 時系列モデルの合同予測領域
- Authors: Eshant English,
- Abstract要約: IIDデータの場合、JPR(Joint Prediction Region)の計算は容易である。
このプロジェクトは、JPRを構築するWolfとWunderliのメソッドを実装し、他のメソッドと比較することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning algorithms are notorious for providing point predictions but not prediction intervals. There are many applications where one requires confidence in predictions and prediction intervals. Stringing together, these intervals give rise to joint prediction regions with the desired significance level. It is an easy task to compute Joint Prediction regions (JPR) when the data is IID. However, the task becomes overly difficult when JPR is needed for time series because of the dependence between the observations. This project aims to implement Wolf and Wunderli's method for constructing JPRs and compare it with other methods (e.g. NP heuristic, Joint Marginals). The method under study is based on bootstrapping and is applied to different datasets (Min Temp, Sunspots), using different predictors (e.g. ARIMA and LSTM). One challenge of applying the method under study is to derive prediction standard errors for models, it cannot be obtained analytically. A novel method to estimate prediction standard error for different predictors is also devised. Finally, the method is applied to a synthetic dataset to find empirical averages and empirical widths and the results from the Wolf and Wunderli paper are consolidated. The experimental results show a narrowing of width with strong predictors like neural nets, widening of width with increasing forecast horizon H and decreasing significance level alpha, controlling the width with parameter k in K-FWE, and loss of information using Joint Marginals.
- Abstract(参考訳): 機械学習アルゴリズムは、ポイント予測を提供することで有名だが、予測間隔は提供していない。
予測と予測間隔の信頼性を必要とするアプリケーションは数多く存在する。
これらの間隔を合わせると、所望の意義レベルを持つ共同予測領域が生まれる。
IIDデータの場合、JPR(Joint Prediction Region)の計算は容易である。
しかし、観測間の依存性のため、時系列にJPRが必要な場合、タスクは過度に困難になる。
このプロジェクトの目的は、WolfとWunderliのJPRの構築方法を実装し、他の手法(例えばNPヒューリスティック、Joint Marginals)と比較することである。
この手法はブートストレッピングに基づいており、異なる予測器(例えばARIMAとLSTM)を用いて異なるデータセット(Min Temp、Sunspots)に適用される。
この手法を応用する一つの課題は、モデルに対する標準誤差を導出することであり、解析的には得られない。
異なる予測器の予測標準誤差を推定する新しい手法も考案された。
最後に,本手法を合成データセットに適用し,実験平均値と実験幅を求め,Wolf and Wunderli紙の結果を統合した。
実験の結果,ニューラルネットワークのような強力な予測器による幅の狭化,予測水平線Hの増加による幅の拡大,重要度αの低減,K-FWEにおけるパラメータkによる幅の制御,およびジョイントマージナルを用いた情報の損失が示された。
関連論文リスト
- Semiparametric conformal prediction [79.6147286161434]
リスクに敏感なアプリケーションは、複数の、潜在的に相関したターゲット変数に対して、よく校正された予測セットを必要とする。
スコアをランダムなベクトルとして扱い、それらの連接関係構造を考慮した予測セットを構築することを目的とする。
実世界のレグレッション問題に対して,所望のカバレッジと競争効率について報告する。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - High-dimensional prediction for count response via sparse exponential weights [0.0]
本稿では,高次元カウントデータ予測のための新しい確率的機械学習フレームワークを提案する。
重要な貢献は、データ予測をカウントするために調整された新しいリスク尺度であり、PAC-ベイズ境界を用いた予測リスクの理論的な保証である。
以上の結果から,非漸近性オラクルの不等式や,空間性に関する事前知識を伴わない速度-最適予測誤差が示唆された。
論文 参考訳(メタデータ) (2024-10-20T12:45:42Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Sparse Deep Learning for Time Series Data: Theory and Applications [9.878774148693575]
疎いディープラーニングは、ディープニューラルネットワークのパフォーマンスを改善するための一般的なテクニックとなっている。
本稿では,データを用いた疎い深層学習の理論について検討する。
提案手法は時系列データの自己回帰順序を連続的に同定できることを示す。
論文 参考訳(メタデータ) (2023-10-05T01:26:13Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
本稿では,適応アンサンブルバッチ多出力多出力共形量子化回帰(AEnbMIMOCQR)と呼ばれる新しいモデル非依存アルゴリズムを提案する。
これにより、予測者は、固定された特定された誤発見率に対して、分布のない方法で、複数段階の事前予測間隔を生成できる。
本手法は, 整合予測の原理に基づいているが, データの分割は不要であり, データの交換ができない場合でも, ほぼ正確なカバレッジを提供する。
論文 参考訳(メタデータ) (2022-07-28T16:40:26Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Rapid Risk Minimization with Bayesian Models Through Deep Learning
Approximation [9.93116974480156]
本稿では,ベイズモデル (BM) とニューラルネットワーク (NN) を組み合わせて,予測を最小限のリスクで行う手法を提案する。
私たちのアプローチは、BMのデータ効率と解釈可能性とNNの速度を組み合わせます。
テストデータセットに無視できる損失がある標準手法よりも、リスク最小限の予測をはるかに高速に達成する。
論文 参考訳(メタデータ) (2021-03-29T15:08:25Z) - Interpretable Machines: Constructing Valid Prediction Intervals with
Random Forests [0.0]
最近の研究で機械学習アルゴリズムを使用する場合の重要な問題は、解釈能力の欠如です。
Random Forest Regression Learnerのこのギャップへの貢献について紹介します。
いくつかのパラメトリックおよび非パラメトリック予測区間がランダムフォレスト点予測のために提供される。
モンテカルロシミュレーションによる徹底的な調査を行い,提案手法の性能を評価した。
論文 参考訳(メタデータ) (2021-03-09T23:05:55Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。