論文の概要: Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand
- arxiv url: http://arxiv.org/abs/2404.17451v2
- Date: Fri, 04 Oct 2024 13:56:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 15:07:59.558302
- Title: Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand
- Title(参考訳): 短期電力需要の非定常確率予測
- Authors: Slawek Smyl, Boris N. Oreshkin, Paweł Pełka, Grzegorz Dudek,
- Abstract要約: 電力システムは、決定論的に説明できない複数の要因から生じる不確実性の下で運用される。
ディープラーニングの最近の進歩は、ポイント予測の精度を大幅に向上させるのに役立っている。
任意の量子を予測できる分布予測のための新しい一般手法を提案する。
- 参考スコア(独自算出の注目度): 8.068451210598678
- License:
- Abstract: Power systems operate under uncertainty originating from multiple factors that are impossible to account for deterministically. Distributional forecasting is used to control and mitigate risks associated with this uncertainty. Recent progress in deep learning has helped to significantly improve the accuracy of point forecasts, while accurate distributional forecasting still presents a significant challenge. In this paper, we propose a novel general approach for distributional forecasting capable of predicting arbitrary quantiles. We show that our general approach can be seamlessly applied to two distinct neural architectures leading to the state-of-the-art distributional forecasting results in the context of short-term electricity demand forecasting task. We empirically validate our method on 35 hourly electricity demand time-series for European countries. Our code is available here: https://github.com/boreshkinai/any-quantile.
- Abstract(参考訳): 電力システムは、決定論的に説明できない複数の要因から生じる不確実性の下で運用される。
分布予測は、この不確実性に関連するリスクを制御・緩和するために用いられる。
近年のディープラーニングの進歩は点予測の精度を大幅に向上させるのに役立っているが、正確な分布予測は依然として重要な課題である。
本稿では,任意の量子を予測できる分布予測手法を提案する。
我々の一般的なアプローチは、短期的な電力需要予測タスクの文脈において、最先端の分散予測結果につながる2つの異なるニューラルネットワークアーキテクチャにシームレスに適用可能であることを示す。
ヨーロッパ諸国の電力需要の35時間時系列を実証的に検証した。
私たちのコードは、https://github.com/boreshkinai/any-quantile.comで利用可能です。
関連論文リスト
- Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
本稿では,長期時系列予測のための制約付き学習手法を提案する。
提案手法は, 予測ウィンドウ上でエラーを発生させながら, 時系列ベンチマークにおける競合平均性能を示すことを示すための, 実用的なプリマル・デュアルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:20:44Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Combining predictive distributions of electricity prices: Does
minimizing the CRPS lead to optimal decisions in day-ahead bidding? [0.0]
本研究では,新しい重み付け手法であるCRPS学習を用いることで,日頭入札における最適決定が導かれるかどうかを検討する。
アンサンブルの多様性の増大は精度に肯定的な影響を与える可能性がある。
分布の等重集約と比較してCRPS学習を使用する場合の計算コストは、高い利益によって相殺されない。
論文 参考訳(メタデータ) (2023-08-29T17:10:38Z) - Probabilistic load forecasting with Reservoir Computing [10.214379018902914]
本研究は,コア時系列予測手法としての貯水池計算に焦点を当てた。
RC文献は主に点予測に重点を置いているが、この研究は一般的な不確実性定量法と貯水池の設定との整合性を探究するものである。
論文 参考訳(メタデータ) (2023-08-24T15:07:08Z) - Regions of Reliability in the Evaluation of Multivariate Probabilistic
Forecasts [73.33395097728128]
時系列予測評価のための適切なスコアリングルールに関する最初の体系的な有限サンプル研究を提供する。
本研究では, 地中構造と予測分布のいくつかの重要な相違点をテストするために, 総合的な総合的合成ベンチマークを用いて解析を行った。
論文 参考訳(メタデータ) (2023-04-19T17:38:42Z) - Creating Probabilistic Forecasts from Arbitrary Deterministic Forecasts
using Conditional Invertible Neural Networks [0.19573380763700712]
我々は、条件付き可逆ニューラルネットワーク(cINN)を用いて、データの基盤となる分布を学習し、この分布からの不確実性を任意の決定論的予測と組み合わせる。
我々のアプローチは、複雑な統計的損失関数やさらなる仮定を伴わずに、確率的予測を簡単に作成できる。
論文 参考訳(メタデータ) (2023-02-03T15:11:39Z) - Adaptive Probabilistic Forecasting of Electricity (Net-)Load [0.0]
電力負荷予測は電力システム事業者や電力市場参加者にとって必要な能力である。
局所的な発電、需要応答、熱と輸送の電化は、電力負荷の基本的な要因を変えつつある。
我々は点予測よりも確率的と考えるが、実際、電気系統を効率的にかつ確実に運用するには不確実性が必要である。
論文 参考訳(メタデータ) (2023-01-24T15:56:14Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Conditional Approximate Normalizing Flows for Joint Multi-Step
Probabilistic Electricity Demand Forecasting [32.907448044102864]
本研究では,条件付き近似正規化流(CANF)を導入し,長い時間的地平線上で相関が存在する場合の確率的多段階時系列予測を行う。
実験の結果, 条件付き近似正規化フローは, 多段階予測精度で他の手法よりも優れており, 最大10倍のスケジューリング決定が導かれることがわかった。
論文 参考訳(メタデータ) (2022-01-08T03:42:12Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。