論文の概要: Bayesian Federated Inference for Survival Models
- arxiv url: http://arxiv.org/abs/2404.17464v1
- Date: Fri, 26 Apr 2024 15:05:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 12:45:10.488722
- Title: Bayesian Federated Inference for Survival Models
- Title(参考訳): 生存モデルに対するベイズ連邦推論
- Authors: Hassan Pazira, Emanuele Massa, Jetty AM Weijers, Anthony CC Coolen, Marianne A Jonker,
- Abstract要約: がん研究において、全体的な生存と進行の自由生存は、しばしばコックスモデルで分析される。
異なる医療センターのデータセットをマージすることは役に立つかもしれないが、厳格なプライバシー法とロジスティックな困難のために、これは必ずしも可能ではない。
近年,一般化線形モデルに対するベイズ連邦推論(BFI)戦略が提案されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In cancer research, overall survival and progression free survival are often analyzed with the Cox model. To estimate accurately the parameters in the model, sufficient data and, more importantly, sufficient events need to be observed. In practice, this is often a problem. Merging data sets from different medical centers may help, but this is not always possible due to strict privacy legislation and logistic difficulties. Recently, the Bayesian Federated Inference (BFI) strategy for generalized linear models was proposed. With this strategy the statistical analyses are performed in the local centers where the data were collected (or stored) and only the inference results are combined to a single estimated model; merging data is not necessary. The BFI methodology aims to compute from the separate inference results in the local centers what would have been obtained if the analysis had been based on the merged data sets. In this paper we generalize the BFI methodology as initially developed for generalized linear models to survival models. Simulation studies and real data analyses show excellent performance; i.e., the results obtained with the BFI methodology are very similar to the results obtained by analyzing the merged data. An R package for doing the analyses is available.
- Abstract(参考訳): がん研究において、全体的な生存と進行の自由生存は、しばしばコックスモデルで分析される。
モデル内のパラメータを正確に見積もるためには、十分なデータ、さらに重要なことは、十分なイベントを観測する必要がある。
実際には、これはしばしば問題です。
異なる医療センターのデータセットをマージすることは役に立つかもしれないが、厳格なプライバシー法とロジスティックな困難のために、これは必ずしも可能ではない。
近年,一般化線形モデルに対するベイズ連邦推論(BFI)戦略が提案されている。
この戦略により、データを収集した(または保存した)ローカルセンターで統計分析を行い、推測結果のみを単一の推定モデルに組み合わせる。
BFIの手法は、分析が統合されたデータセットに基づいていた場合の、局所的な中心における別の推論結果から得られるものを計算することを目的としている。
本稿では,一般線形モデルから生存モデルへのBFI手法の一般化について述べる。
シミュレーション研究と実データ解析は優れた性能を示し、すなわち、BFI法で得られた結果は、合併したデータを解析した結果と非常によく似ている。
分析を行うためのRパッケージが利用可能だ。
関連論文リスト
- Federated Causal Inference: Multi-Centric ATE Estimation beyond Meta-Analysis [12.896319628045967]
我々は、中央に分散したデータから治療効果を推定するフェデレート因果推論(Federated Causal Inference)について検討する。
プラグインG-Formulaから得られた平均治療効果(ATE)推定器の3つのクラスを比較した。
論文 参考訳(メタデータ) (2024-10-22T10:19:17Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Bayesian Federated Inference for regression models based on non-shared multicenter data sets from heterogeneous populations [0.0]
回帰モデルでは、サンプルサイズは予測器の数に対して十分な大きさでなければならない。
異なる(医療)センターで収集された異なるデータセットからデータをポーリングすることはこの問題を軽減するが、プライバシー規制やロジスティックな問題のためにしばしば実現不可能である。
別の方法は、センター内のローカルデータを別々に分析し、統計的推測結果とベイズ連邦推論(BFI)手法を組み合わせることである。
このアプローチの目的は、組み合わせたデータに対して統計的解析を行った場合、何を発見したのかを、別々の中心における推論結果から計算することである。
論文 参考訳(メタデータ) (2024-02-05T11:10:27Z) - Heterogeneous Datasets for Federated Survival Analysis Simulation [6.489759672413373]
本研究では、既存の非フェデレーションデータセットから再現可能な方法で開始することで、現実的な異種データセットを構築する新しい手法を提案する。
具体的には、ディリクレ分布に基づく2つの新しいデータセット分割アルゴリズムを提供し、各データサンプルを慎重に選択したクライアントに割り当てる。
提案手法の実装は,フェデレートされた環境をシミュレートしてサバイバル分析を行うことを推奨し,広く普及している。
論文 参考訳(メタデータ) (2023-01-28T11:37:07Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z) - The UU-test for Statistical Modeling of Unimodal Data [0.20305676256390928]
一次元データセットの一様性を決定するUUテスト(Unimodal Uniform test)手法を提案する。
このアプローチのユニークな特徴は、一様性の場合、一様混合モデルという形でデータの統計モデルも提供することである。
論文 参考訳(メタデータ) (2020-08-28T08:34:28Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Federated Survival Analysis with Discrete-Time Cox Models [0.46331617589391827]
私たちは、フェデレートラーニング(FL)を用いて、異なるセンターに位置する分散データセットから機械学習モデルを構築します。
得られたモデルが、いくつかの悪い設定で重要なパフォーマンス損失を被る可能性があることを示す。
このアプローチを用いて、合成データに基づく標準FL技術と、The Cancer Genome Atlas (TCGA)による実世界のデータセットを用いて生存モデルを訓練する。
論文 参考訳(メタデータ) (2020-06-16T08:53:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。