An Off-Policy Reinforcement Learning Algorithm Customized for Multi-Task Fusion in Large-Scale Recommender Systems
- URL: http://arxiv.org/abs/2404.17589v3
- Date: Fri, 27 Sep 2024 11:08:17 GMT
- Title: An Off-Policy Reinforcement Learning Algorithm Customized for Multi-Task Fusion in Large-Scale Recommender Systems
- Authors: Peng Liu, Cong Xu, Ming Zhao, Jiawei Zhu, Bin Wang, Yi Ren,
- Abstract summary: Multi-Task Fusion (MTF) is responsible for combining multiple scores outputted by Multi-Task Learning (MTL) into a final score to maximize user satisfaction.
Recently, to optimize long-term user satisfaction within a recommendation session, Reinforcement Learning (RL) is used for MTF in the industry.
In this paper, we propose a novel method named IntegratedRL-MTF customized for MTF in large-scale RSs.
- Score: 19.443149691831856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the last critical stage of RSs, Multi-Task Fusion (MTF) is responsible for combining multiple scores outputted by Multi-Task Learning (MTL) into a final score to maximize user satisfaction, which determines the ultimate recommendation results. Recently, to optimize long-term user satisfaction within a recommendation session, Reinforcement Learning (RL) is used for MTF in the industry. However, the off-policy RL algorithms used for MTF so far have the following severe problems: 1) to avoid out-of-distribution (OOD) problem, their constraints are overly strict, which seriously damage their performance; 2) they are unaware of the exploration policy used for producing training data and never interact with real environment, so only suboptimal policy can be learned; 3) the traditional exploration policies are inefficient and hurt user experience. To solve the above problems, we propose a novel method named IntegratedRL-MTF customized for MTF in large-scale RSs. IntegratedRL-MTF integrates off-policy RL model with our online exploration policy to relax overstrict and complicated constraints, which significantly improves its performance. We also design an extremely efficient exploration policy, which eliminates low-value exploration space and focuses on exploring potential high-value state-action pairs. Moreover, we adopt progressive training mode to further enhance our model's performance with the help of our exploration policy. We conduct extensive offline and online experiments in the short video channel of Tencent News. The results demonstrate that our model outperforms other models remarkably. IntegratedRL-MTF has been fully deployed in our RS and other large-scale RSs in Tencent, which have achieved significant improvements.
Related papers
- An Enhanced-State Reinforcement Learning Algorithm for Multi-Task Fusion in Large-Scale Recommender Systems [12.277443583840963]
We propose a novel method called Enhanced-State RL for Multi-Task Fusion (MTF) in Recommender Systems (RSs)
Our method first defines user features, item features, and other valuable features collectively as the enhanced state; then proposes a novel actor and critic learning process to utilize the enhanced state to make much better action for each user-item pair.
arXiv Detail & Related papers (2024-09-18T03:34:31Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z) - Train Hard, Fight Easy: Robust Meta Reinforcement Learning [78.16589993684698]
A major challenge of reinforcement learning (RL) in real-world applications is the variation between environments, tasks or clients.
Standard MRL methods optimize the average return over tasks, but often suffer from poor results in tasks of high risk or difficulty.
In this work, we define a robust MRL objective with a controlled level.
The data inefficiency is addressed via the novel Robust Meta RL algorithm (RoML)
arXiv Detail & Related papers (2023-01-26T14:54:39Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Multi-Task Fusion via Reinforcement Learning for Long-Term User
Satisfaction in Recommender Systems [3.4394890850129007]
We propose a Batch Reinforcement Learning based Multi-Task Fusion framework (BatchRL-MTF)
We learn an optimal recommendation policy from the fixed batch data offline for long-term user satisfaction.
With a comprehensive investigation on user behaviors, we model the user satisfaction reward with subtles from two aspects of user stickiness and user activeness.
arXiv Detail & Related papers (2022-08-09T06:35:05Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Multi-fidelity reinforcement learning framework for shape optimization [0.8258451067861933]
We introduce a controlled transfer learning framework that leverages a multi-fidelity simulation setting.
Our strategy is deployed for an airfoil shape optimization problem at high Reynolds numbers.
Our results demonstrate this framework's applicability to other scientific DRL scenarios.
arXiv Detail & Related papers (2022-02-22T20:44:04Z) - Active Finite Reward Automaton Inference and Reinforcement Learning
Using Queries and Counterexamples [31.31937554018045]
Deep reinforcement learning (RL) methods require intensive data from the exploration of the environment to achieve satisfactory performance.
We propose a framework that enables an RL agent to reason over its exploration process and distill high-level knowledge for effectively guiding its future explorations.
Specifically, we propose a novel RL algorithm that learns high-level knowledge in the form of a finite reward automaton by using the L* learning algorithm.
arXiv Detail & Related papers (2020-06-28T21:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.