A Conditional Independence Test in the Presence of Discretization
- URL: http://arxiv.org/abs/2404.17644v3
- Date: Wed, 02 Oct 2024 09:55:25 GMT
- Title: A Conditional Independence Test in the Presence of Discretization
- Authors: Boyang Sun, Yu Yao, Huangyuan Hao, Yumou Qiu, Kun Zhang,
- Abstract summary: Existing test methods can't work when only discretized observations are available.
We propose a conditional independence test specifically designed to accommodate the presence of such discretization.
- Score: 14.917729593550199
- License:
- Abstract: Testing conditional independence has many applications, such as in Bayesian network learning and causal discovery. Different test methods have been proposed. However, existing methods generally can not work when only discretized observations are available. Specifically, consider $X_1$, $\tilde{X}_2$ and $X_3$ are observed variables, where $\tilde{X}_2$ is a discretization of latent variables $X_2$. Applying existing test methods to the observations of $X_1$, $\tilde{X}_2$ and $X_3$ can lead to a false conclusion about the underlying conditional independence of variables $X_1$, $X_2$ and $X_3$. Motivated by this, we propose a conditional independence test specifically designed to accommodate the presence of such discretization. To achieve this, we design the bridge equations to recover the parameter reflecting the statistical information of the underlying latent continuous variables. An appropriate test statistic and its asymptotic distribution under the null hypothesis of conditional independence have also been derived. Both theoretical results and empirical validation have been provided, demonstrating the effectiveness of our test methods.
Related papers
- Collaborative non-parametric two-sample testing [55.98760097296213]
The goal is to identify nodes where the null hypothesis $p_v = q_v$ should be rejected.
We propose the non-parametric collaborative two-sample testing (CTST) framework that efficiently leverages the graph structure.
Our methodology integrates elements from f-divergence estimation, Kernel Methods, and Multitask Learning.
arXiv Detail & Related papers (2024-02-08T14:43:56Z) - Differentially Private Conditional Independence Testing [35.376975903797444]
Conditional independence (CI) tests are widely used in statistical data analysis.
In this work, we investigate conditional independence testing under the constraint of differential privacy.
arXiv Detail & Related papers (2023-06-11T16:46:00Z) - Sequential Kernelized Independence Testing [101.22966794822084]
We design sequential kernelized independence tests inspired by kernelized dependence measures.
We demonstrate the power of our approaches on both simulated and real data.
arXiv Detail & Related papers (2022-12-14T18:08:42Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - An $\ell^p$-based Kernel Conditional Independence Test [21.689461247198388]
We propose a new computationally efficient test for conditional independence based on the $Lp$ distance between two kernel-based representatives of well suited distributions.
We conduct a series of experiments showing that the performance of our new tests outperforms state-of-the-art methods both in term of statistical power and type-I error even in the high dimensional setting.
arXiv Detail & Related papers (2021-10-28T03:18:27Z) - Optimal Testing of Discrete Distributions with High Probability [49.19942805582874]
We study the problem of testing discrete distributions with a focus on the high probability regime.
We provide the first algorithms for closeness and independence testing that are sample-optimal, within constant factors.
arXiv Detail & Related papers (2020-09-14T16:09:17Z) - Tractable Inference in Credal Sentential Decision Diagrams [116.6516175350871]
Probabilistic sentential decision diagrams are logic circuits where the inputs of disjunctive gates are annotated by probability values.
We develop the credal sentential decision diagrams, a generalisation of their probabilistic counterpart that allows for replacing the local probabilities with credal sets of mass functions.
For a first empirical validation, we consider a simple application based on noisy seven-segment display images.
arXiv Detail & Related papers (2020-08-19T16:04:34Z) - Stable Prediction via Leveraging Seed Variable [73.9770220107874]
Previous machine learning methods might exploit subtly spurious correlations in training data induced by non-causal variables for prediction.
We propose a conditional independence test based algorithm to separate causal variables with a seed variable as priori, and adopt them for stable prediction.
Our algorithm outperforms state-of-the-art methods for stable prediction.
arXiv Detail & Related papers (2020-06-09T06:56:31Z) - Testing Goodness of Fit of Conditional Density Models with Kernels [16.003516725803774]
We propose two nonparametric statistical tests of goodness of fit for conditional distributions.
We show that our tests are consistent against any fixed alternative conditional model.
We demonstrate the interpretability of our test on a task of modeling the distribution of New York City's taxi drop-off location.
arXiv Detail & Related papers (2020-02-24T14:04:37Z) - Optimal rates for independence testing via $U$-statistic permutation
tests [7.090165638014331]
We study the problem of independence testing given independent and identically distributed pairs taking values in a $sigma$-finite, separable measure space.
We first show that there is no valid test of independence that is uniformly consistent against alternatives of the form $f: D(f) geq rho2 $.
arXiv Detail & Related papers (2020-01-15T19:04:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.