Conditional Diffusion Models Based Conditional Independence Testing
- URL: http://arxiv.org/abs/2412.11744v2
- Date: Wed, 18 Dec 2024 12:34:00 GMT
- Title: Conditional Diffusion Models Based Conditional Independence Testing
- Authors: Yanfeng Yang, Shuai Li, Yingjie Zhang, Zhuoran Sun, Hai Shu, Ziqi Chen, Renming Zhang,
- Abstract summary: Conditional randomization test (CRT) was recently introduced to test whether two random variables, $X$ and $Y$, are conditionally independent.
We propose using conditional diffusion models (CDMs) to learn the distribution of $X|Z$.
- Score: 8.34871567507739
- License:
- Abstract: Conditional independence (CI) testing is a fundamental task in modern statistics and machine learning. The conditional randomization test (CRT) was recently introduced to test whether two random variables, $X$ and $Y$, are conditionally independent given a potentially high-dimensional set of random variables, $Z$. The CRT operates exceptionally well under the assumption that the conditional distribution $X|Z$ is known. However, since this distribution is typically unknown in practice, accurately approximating it becomes crucial. In this paper, we propose using conditional diffusion models (CDMs) to learn the distribution of $X|Z$. Theoretically and empirically, it is shown that CDMs closely approximate the true conditional distribution. Furthermore, CDMs offer a more accurate approximation of $X|Z$ compared to GANs, potentially leading to a CRT that performs better than those based on GANs. To accommodate complex dependency structures, we utilize a computationally efficient classifier-based conditional mutual information (CMI) estimator as our test statistic. The proposed testing procedure performs effectively without requiring assumptions about specific distribution forms or feature dependencies, and is capable of handling mixed-type conditioning sets that include both continuous and discrete variables. Theoretical analysis shows that our proposed test achieves a valid control of the type I error. A series of experiments on synthetic data demonstrates that our new test effectively controls both type-I and type-II errors, even in high dimensional scenarios.
Related papers
- Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.
The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.
The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Doubly Robust Conditional Independence Testing with Generative Neural Networks [8.323172773256449]
This article addresses the problem of testing the conditional independence of two generic random vectors $X$ and $Y$ given a third random vector $Z$.
We propose a new non-parametric testing procedure that avoids explicitly estimating any conditional distributions.
arXiv Detail & Related papers (2024-07-25T01:28:59Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Nearest-Neighbor Sampling Based Conditional Independence Testing [15.478671471695794]
Conditional randomization test (CRT) was recently proposed to test whether two random variables X and Y are conditionally independent given random variables Z.
The aim of this paper is to develop a novel alternative of CRT by using nearest-neighbor sampling without assuming the exact form of the distribution of X given Z.
arXiv Detail & Related papers (2023-04-09T07:54:36Z) - DIET: Conditional independence testing with marginal dependence measures
of residual information [30.99595500331328]
Conditional randomization tests (CRTs) assess whether a variable $x$ is predictive of another variable $y$.
Existing solutions to reduce the cost of CRTs typically split the dataset into a train and a test portion.
We propose the decoupled independence test (DIET), an algorithm that avoids both of these issues.
arXiv Detail & Related papers (2022-08-18T00:48:04Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - An $\ell^p$-based Kernel Conditional Independence Test [21.689461247198388]
We propose a new computationally efficient test for conditional independence based on the $Lp$ distance between two kernel-based representatives of well suited distributions.
We conduct a series of experiments showing that the performance of our new tests outperforms state-of-the-art methods both in term of statistical power and type-I error even in the high dimensional setting.
arXiv Detail & Related papers (2021-10-28T03:18:27Z) - On the Generative Utility of Cyclic Conditionals [103.1624347008042]
We study whether and how can we model a joint distribution $p(x,z)$ using two conditional models $p(x|z)$ that form a cycle.
We propose the CyGen framework for cyclic-conditional generative modeling, including methods to enforce compatibility and use the determined distribution to fit and generate data.
arXiv Detail & Related papers (2021-06-30T10:23:45Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Double Generative Adversarial Networks for Conditional Independence
Testing [8.359770027722275]
High-dimensional conditional independence testing is a key building block in statistics and machine learning.
We propose an inferential procedure based on double generative adversarial networks (GANs)
arXiv Detail & Related papers (2020-06-03T16:14:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.