Learning Manipulation Tasks in Dynamic and Shared 3D Spaces
- URL: http://arxiv.org/abs/2404.17673v1
- Date: Fri, 26 Apr 2024 19:40:19 GMT
- Title: Learning Manipulation Tasks in Dynamic and Shared 3D Spaces
- Authors: Hariharan Arunachalam, Marc Hanheide, Sariah Mghames,
- Abstract summary: Learning automated pick-and-place operations can be efficiently done by introducing collaborative autonomous systems.
In this paper, we propose a deep reinforcement learning strategy to learn the place task of multi-categorical items.
- Score: 2.4892784882130132
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automating the segregation process is a need for every sector experiencing a high volume of materials handling, repetitive and exhaustive operations, in addition to risky exposures. Learning automated pick-and-place operations can be efficiently done by introducing collaborative autonomous systems (e.g. manipulators) in the workplace and among human operators. In this paper, we propose a deep reinforcement learning strategy to learn the place task of multi-categorical items from a shared workspace between dual-manipulators and to multi-goal destinations, assuming the pick has been already completed. The learning strategy leverages first a stochastic actor-critic framework to train an agent's policy network, and second, a dynamic 3D Gym environment where both static and dynamic obstacles (e.g. human factors and robot mate) constitute the state space of a Markov decision process. Learning is conducted in a Gazebo simulator and experiments show an increase in cumulative reward function for the agent further away from human factors. Future investigations will be conducted to enhance the task performance for both agents simultaneously.
Related papers
- Latent Exploration for Reinforcement Learning [87.42776741119653]
In Reinforcement Learning, agents learn policies by exploring and interacting with the environment.
We propose LATent TIme-Correlated Exploration (Lattice), a method to inject temporally-correlated noise into the latent state of the policy network.
arXiv Detail & Related papers (2023-05-31T17:40:43Z) - Human-Timescale Adaptation in an Open-Ended Task Space [56.55530165036327]
We show that training an RL agent at scale leads to a general in-context learning algorithm that can adapt to open-ended novel embodied 3D problems as quickly as humans.
Our results lay the foundation for increasingly general and adaptive RL agents that perform well across ever-larger open-ended domains.
arXiv Detail & Related papers (2023-01-18T15:39:21Z) - CLAS: Coordinating Multi-Robot Manipulation with Central Latent Action
Spaces [9.578169216444813]
This paper proposes an approach to coordinating multi-robot manipulation through learned latent action spaces that are shared across different agents.
We validate our method in simulated multi-robot manipulation tasks and demonstrate improvement over previous baselines in terms of sample efficiency and learning performance.
arXiv Detail & Related papers (2022-11-28T23:20:47Z) - Reinforcement Learning for Location-Aware Scheduling [1.0660480034605238]
We show how various aspects of the warehouse environment affect performance and execution priority.
We propose a compact representation of the state and action space for location-aware multi-agent systems.
We also show how agents trained in certain environments maintain performance in completely unseen settings.
arXiv Detail & Related papers (2022-03-07T15:51:00Z) - Learning to Shift Attention for Motion Generation [55.61994201686024]
One challenge of motion generation using robot learning from demonstration techniques is that human demonstrations follow a distribution with multiple modes for one task query.
Previous approaches fail to capture all modes or tend to average modes of the demonstrations and thus generate invalid trajectories.
We propose a motion generation model with extrapolation ability to overcome this problem.
arXiv Detail & Related papers (2021-02-24T09:07:52Z) - Towards Coordinated Robot Motions: End-to-End Learning of Motion
Policies on Transform Trees [63.31965375413414]
We propose to solve multi-task problems through learning structured policies from human demonstrations.
Our structured policy is inspired by RMPflow, a framework for combining subtask policies on different spaces.
We derive an end-to-end learning objective function that is suitable for the multi-task problem.
arXiv Detail & Related papers (2020-12-24T22:46:22Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
We build a data collection system tailored to 6-DoF manipulation settings.
We develop an algorithm to train the policy iteratively on new data collected by the system.
We demonstrate that agents trained on data collected by our intervention-based system and algorithm outperform agents trained on an equivalent number of samples collected by non-interventional demonstrators.
arXiv Detail & Related papers (2020-12-12T05:30:35Z) - Decentralized Motion Planning for Multi-Robot Navigation using Deep
Reinforcement Learning [0.41998444721319217]
This work presents a decentralized motion planning framework for addressing the task of multi-robot navigation using deep reinforcement learning.
The notion of decentralized motion planning with common and shared policy learning was adopted, which allowed robust training and testing of this approach.
arXiv Detail & Related papers (2020-11-11T07:35:21Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z) - Constrained-Space Optimization and Reinforcement Learning for Complex
Tasks [42.648636742651185]
Learning from Demonstration is increasingly used for transferring operator manipulation skills to robots.
This paper presents a constrained-space optimization and reinforcement learning scheme for managing complex tasks.
arXiv Detail & Related papers (2020-04-01T21:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.