CoMM: Collaborative Multi-Agent, Multi-Reasoning-Path Prompting for Complex Problem Solving
- URL: http://arxiv.org/abs/2404.17729v1
- Date: Fri, 26 Apr 2024 23:29:12 GMT
- Title: CoMM: Collaborative Multi-Agent, Multi-Reasoning-Path Prompting for Complex Problem Solving
- Authors: Pei Chen, Boran Han, Shuai Zhang,
- Abstract summary: We propose a collaborative multi-agent, multi-reasoning-path (CoMM) prompting framework.
Specifically, we prompt LLMs to play different roles in a problem-solving team, and encourage different role-play agents to collaboratively solve the target task.
Empirical results demonstrate the effectiveness of the proposed methods on two college-level science problems.
- Score: 9.446546965008249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown great ability in solving traditional natural language tasks and elementary reasoning tasks with appropriate prompting techniques. However, their ability is still limited in solving complicated science problems. In this work, we aim to push the upper bound of the reasoning capability of LLMs by proposing a collaborative multi-agent, multi-reasoning-path (CoMM) prompting framework. Specifically, we prompt LLMs to play different roles in a problem-solving team, and encourage different role-play agents to collaboratively solve the target task. In particular, we discover that applying different reasoning paths for different roles is an effective strategy to implement few-shot prompting approaches in the multi-agent scenarios. Empirical results demonstrate the effectiveness of the proposed methods on two college-level science problems over competitive baselines. Our further analysis shows the necessity of prompting LLMs to play different roles or experts independently. We release the code at: https://github.com/amazon-science/comm-prompt
Related papers
- Multi-Agent Large Language Models for Conversational Task-Solving [0.0]
Multi-agent systems arise as new protagonists in conversational task-solving.
It remains unascertained how multi-agent discussions perform across tasks of varying complexity.
I propose a taxonomy of 20 multi-agent research studies from 2022 to 2024.
arXiv Detail & Related papers (2024-10-30T11:38:13Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Challenges Faced by Large Language Models in Solving Multi-Agent Flocking [17.081075782529098]
Flocking is a behavior where multiple agents in a system attempt to stay close to each other while avoiding collision and maintaining a desired formation.
Recently, large language models (LLMs) have displayed an impressive ability to solve various collaboration tasks as individual decision-makers.
This paper discusses the challenges LLMs face in multi-agent flocking and suggests areas for future improvement.
arXiv Detail & Related papers (2024-04-06T22:34:07Z) - Rethinking the Bounds of LLM Reasoning: Are Multi-Agent Discussions the
Key? [84.36332588191623]
We propose a novel group discussion framework to enrich the set of discussion mechanisms.
We observe that the multi-agent discussion performs better than a single agent only when there is no demonstration in the prompt.
arXiv Detail & Related papers (2024-02-28T12:04:05Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - Multi-Agent Consensus Seeking via Large Language Models [6.922356864800498]
Multi-agent systems driven by large language models (LLMs) have shown promising abilities for solving complex tasks in a collaborative manner.
This work considers a fundamental problem in multi-agent collaboration: consensus seeking.
arXiv Detail & Related papers (2023-10-31T03:37:11Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.